
 

The Photonic Curing Process for Printed Electronics with 
Applications to Printed RFID Tags and Thin Film Transistors   
Stan Farnsworth; Kurt Schroder, Ph.D.; Bob Wenz, Ph.D.; Dave Pope, Ph.D.; Ian Rawson; NovaCentrix®  200-B Parker Dr Suite 580, 
Austin, TX 78728. stan.farnsworth@novacentrix.com 

 
Abstract 

Photonic curing has been shown to be effective in heating inks 
and functional films to very high temperatures, in excess of 1000C, 
on low-temperature substrates such as polymers and paper.  This 
paper reviews the basic principles of the technology and expounds 
on implications to applications and materials, including cost and 
performance.  Specifically, application with thin film transistors 
and with radio frequency identification tags are presented. Some of 
this work has been previously presented by the authors. 
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Objective and Background  
One of the key limiting challenges in flexible printed 

electronics has been to reconcile the conflicting high-temperature 
processing requirements of high-performance materials such as 
inorganic conductive inks with low temperature substrates such as 
polymers and paper materials.  The authors present a photonic 
curing process designed to heat only the target inks using pulsed 
light from flash lamps.  The high intensity and short duration of the 
processing preferentially heats the inks while minimizing energy 
transfer to the substrate.  This flashlamp-based technology dries, 
sinters, anneals, and even modulates chemical reactions, and has 
already been developed into a toolset suitable for direct integration 
for roll-to-roll manufacturing.  The photonic curing tools enable 
the use of traditional conductive inks on a wide variety of desired 
flexible substrates which do not have the ability to withstand 
sustained elevated processing temperatures.  These tools also 
enable the development of new materials based on the unique 
energy delivery capabilities the tools offer.  Photonic curing 
technology shows promise for converting a-Si to micro-crystalline 
Si on low-temperature substrates, and for enabling new transistor 
structures.  The combination of tools, materials, and processing 
methods has positive implications in applications such as displays. 

Methods 
Photonic curing was developed to resolve the fundamental 

thermal processing challenge common to printed electronics, 
namely processing high-temperature functional materials such as 
conductors, semiconductors, and dielectrics on low-cost flexible 
substrates such as polymers and paper.  The photonic curing 
process uses pulsed broad-spectrum light from specially-designed 
flashlamps to thermally process almost any thin film.  The thin 
film, printed on a low temperature substrate, is heated by a brief 
but very intense pulse of light from the flashlamps.  If the pulse of 
light is short enough, the thin film can be heated to a temperature 

far beyond the normal maximum working temperature of the 
substrate without damaging the substrate.  This technique, which 
was developed by NovaCentrix®, is embodied in their PulseForge® 
tools.  Figure 1 below depicts a typical PulseForge tool, including 
the primary module components (left- right) of:  
• Heat exchanger 
• Power rack 
• Lamp Assembly (top) 
• Material conveyor (bottom) 
• Control module with touch-screen interface. 
 

 
Figure 1.  PulseForge® 3300 photonic curing system 

Using the touch-screen interface, a tool user is able to control 
parameters such as: 
• Pulse duration from 25 to 10,000 microseconds, in 1 

microsecond intervals 

• Number of pulses delivered 

• Spacing between pulses 

• Pulse intensity, with peak power delivered as high as 10 
megawatts or greater 

• Effective pulse shape 

• Adjustment of peak wavelengths, from UV to near IR 

• Numerous other parameters 

The minimum effective curing area per pulse is 6 inches 
cross-web x 3 inches down-web in the standard configuration.  
Cross-web width can be configured larger in 3-inch increments.  
Down-web length options include 3 inches, 6 inches, and 12 
inches.  The tool is built with an encoder to automatically 
synchronize the pulses to a moving web and provide the user-
configured pulse conditions on each area of the target material.  
The tool can be placed over a material conveyor for stand-alone 
operation, as shown in Figure 1, or mounted over a user-provided 
material handling system such as a roll-to-roll web handler. 

440 ©2012 Society for Imaging Science and Technology



 

 
Figure 2.  Thermal simulation of the photonic curing process (300 
microseconds, 1 J/cm2) for a 1 micron thick silver film on 150 micron thick 
PET.  Temperatures beyond 1000 °C can be achieved on PET without 
damage to the PET. 

Figure 2 illustrates the main thermal effect utilized by the 
process.   A high power, short pulse of light is used to heat a thin 
film of material, such as printed silver or copper nanoparticles or 
flakes, to a high temperature for a brief amount of time.  This can 
be done on a low-temperature substrate, such as polyethylene 
terephthalate (PET).  Normally, PET has a maximum working 
temperature of 150 °C.  In contrast, photonic curing can heat a thin 
film to temperatures beyond 1000 °C on the surface of a PET 
substrate without damaging it.  This is due to the extremely rapid 
heating and subsequent cooling of the thin film.  Temperatures can 
be achieved suitable for sintering many materials including silver 
and copper.  The pulse of light is very rapid and short, and suitably 
configured by the operator such that the back side of the substrate 
is not heated appreciably during the pulse.  After the pulse is over, 
the thermal mass of the substrate rapidly cools the film via 
conduction.  The pulse is usually less than a millisecond in 
duration, and the time spent at elevated temperature is only a few 
milliseconds.  Although the substrate at the interface with the thin 
film reaches a temperature far beyond its maximum working 
temperature, there is not enough time for its mechanical properties 
to be significantly changed.  This effect is highly desirable as the 
thin film has now been processed at a temperature which would 
severely damage the substrate if processed with an ordinary oven.  
Photonic curing often allows the replacement of high-temperature 
substrates with lower-temperature (e.g. cheaper) alternatives.   

Since most thermal processes are Arrhenius in nature, i.e., the 
curing rate is related to the exponential of the temperature, this 
short process can, in many cases, replace minutes of processing in 
a 150 °C oven.  This further means that if the light is pulsed rapidly 
and synchronized to a moving web, it can replace a large 
festooning oven in a space of only a few feet.  In addition to curing 
materials quickly, higher temperature materials such as 
semiconductors or ceramics that cannot ordinarily be cured on a 
low-temperature substrate can now be cured using this technology.  
Because typical processing times are about 1 millisecond, photonic 
curing systems can cure near-instantly, and are currently available 
for high-speed roll-to-roll processing.  In addition to sintering, 

photonic curing is being used to dry films as well as anneal and 
modulate chemical reactions to make new types of materials. 

 
Computational Model: 
There was a need to model the thermal response of arbitrary 

user-defined material systems, so a proprietary numerical 
simulation tool (SimPulse™) was developed by NovaCentrix.  The 
model allows the user to arbitrarily define a material system, 
composed of film layers using user-provided thicknesses and 
library or user-provided thermo-physical property values.  The user 
interface for the simulation is similar to the user interface for the 
PulseForge photonic curing tools, and contains all of the internal 
settings of the PulseForge 3200/3300 platforms.  SimPulse ships as 
a standard option with these systems.  Figure 2 (above) depicts 
data generated from the model as described.  Using the model, and 
defining the material conditions and the pulse exposure conditions, 
results in a quick presentation of the thermal impact in the 
materials as a function of time and of depth.  The model 
dramatically reduces development time as over 10 discrete 
exposure conditions can be adjusted. 

Applications and Results 

Enabled Material- Copper Oxide Conductive Inks: 
Copper has long been the desired material as a conductor for 

printed electronics.  Currently, copper is over 100 times cheaper 
than silver yet has over 90% of silver’s electrical conductivity.  
Still, silver remains the dominant conductor in printed electronics.  
The reason a precious metal is still used over copper is almost 
exclusively related to the oxidation behavior of copper.  Since 
copper oxide does not appreciably conduct electricity, protection 
from oxidation is needed at all stages.   Since the sintering stage is 
high in temperature, it is the most critical.  If there is any oxygen 
present when attempting to sinter using traditional thermal 
processes, the particles will oxidize before they sinter.   

Alternatively, instead of fighting the oxidation of copper, one 
can begin with pure copper oxide and formulate it with a high 
temperature reducing agent.  The copper oxide particles are then 
converted to copper by modulating the redox reaction with the 
beam from the photonic curing tool. 

 

 
Figure 3:  Image of screen-printed copper oxide reduction ink before and after 
conversion to copper in open air on Paper. Note the pronounced color change 
after processing. 

Figure 3 shows a screen print version of a copper oxide 
reduction ink (Metalon® ICI-021) on ordinary paper before and 
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after processing with a photonic curing tool (PulseForge® 3200).  
The sheet resistance before curing is of order 1 GΩ/sq, and after 
curing the sheet resistance is approximately 60 mΩ/sq.  That is, 
photonic curing increases the conductivity by approximately 8 
orders of magnitude in about 1 millisecond.  As expected, the trace 
turns from the black color of copper oxide to the familiar shiny hue 
of pure copper.  Since, the reduction relies upon a transient effect; 
the inks cannot be cured in an ordinary oven. They are available 
commercially from NovaCentrix. 

Photonic Curing for RFID Antenna: 
The authors used the ICI-021 screen ink to produce the RFID 

antenna shown in Figure 4 below, on 110lb paper as the substrate.   
 

 
Figure 4. Screen-printed RFID antenna on  paper after conversion to copper. 

The tag is an Impinj® E42i and is produced under license.  
The tag has a printed area of 422 mm2.  The ink was deposited with 
a 165 mesh screen with emulsion thickness of 0.6 thousandths of 
an inch.  The measured dried ink thickness was approximately 10 
microns.  With these dimensions, and with a volume ink price of 
$75/kg, the ink cost per tag is determined to be approximately 
$0.003. 

This tag was completed by a customer with the addition of a 
Monza 4 tag applied via anisotropic conductive adhesive Delo AC 
268.  Read-ranges were as high as 5.5 meters (See Figure 5 below), 
which compares favorably to the read-ranges of 7 meters achieved 
in the same testing using traditional aluminum-etch tags. There is 
much optimization to do at every step of the process, but these 
results are encouraging and, to our customers, merit moving 
forward with specific development efforts. 

 
Applications for Displays: 

The use of photonic curing to thermally process thin films in 
display applications offers several benefits.  One major benefit is 
that one can now focus on the thermal processing requirements of 
the thin film, unconstrained by the thermal limitations of the 
substrate.  Another benefit is speed of thermal processing.  Using 
photonic curing, temperatures beyond 1000 °C can be achieved in 
silicon film on glass or plastic, with the substrate base remaining 
relatively near room temperature.  Even traditionally rapid 
processing still requires seconds to heat the materials, with the 
resulting thermal equilibrium between the target film and the 
substrate being undesirable for use in many flexible applications.  
A third benefit is that the time-temperature profile in a thin film 
stack be micro-engineered by tuning the energy delivery on a sub-
millisecond time scale to achieve an optimized condition for both 
the thin film and the substrate on which it adheres.  This would be 
especially true for advanced displays fabricated on low cost plastic 
substrates.  These benefits taken together offer the display industry 
the opportunity to improve performance, rapidly manufacture and 
lower the cost of future displays.  Some example materials that 
may be of use in current or future displays that have been 

processed with photonic curing in our labs include silver, copper, 
silicon, organo-silanes, and a variety of other materials on plastic 
substrates.     

 
Figure 5:  Screen shot of the performance measurement oif processed ICI ink 
show all antennae at the same level on read range 

 
Figure 6:  Screen shot of the performance measurement of aluminum etched 
inlays 

Photonic Curing for Annealing Si: 
A thin 200nm film of amorphous silicon (a-Si )was 

vacuum deposited onto a 500 microns thick borosilica (BS) glass 
wafer  by e-beam (EB) thermal evaporation.  Annealing 
experiments with a PulseForge 3300 showed that the a-Si film can 
be converted from a-Si  to a microcrystalline form of silicon (ux-
Si) only when a threshold total pulse dose (data withheld) is 
achieved.  

 
Figure 7.  Raman results comparing a-Si deposition before and after suitable 
photonic curing, with resulting microcrystal structure. 

μx-Si 

a-Si 
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Transverse Thermal Processing:  Photonic curing is also 
being used to develop novel TFT structures enabled by the creation 
of controlled strong thermal gradients in the target materials and 
substrates.  By applying materials which are more or less absorbing 
of the PulseForge energy and which have the appropriate thermal 
properties of the target and adjacent materials, it is possible to use 
lateral, or transverse, thermal heating to selectively process 
materials to achieve a change in material properties.   

 
Figure 8.  Simple depiction of creation of heat-affected zone adjacent to 
absorbing material, created by conduction of thermal energy from the 
absorbing material. 

By utilizing the lateral heat spreading effect, a small region 
between two photonic-energy-absorbing materials for example can 
be thermally processed.  The resulting laterally-conducted thermal 
energy can be used for very selective annealing or doping.   

 
 

Figure 9.  Extension of Figure 8, depicting possible arrangements of absorber 
materials with the addition of a high-temperature-capable layer.  

 

This concept is called transverse thermal processing (TTP) and is 
currently an area of significant internal development using the 
photonic curing tools.  Using TTP the authors have successfully 
created functional TFT’s.  This work will be presented in a 
dedicated paper soon. 

Discussion 
Photonic curing is seen to have a myriad of implications.  
Materials design and engineering is impacted, as exemplified with 
the copper oxide reduction inks.  Materials in turn affect 
applications such as RFID.  The processing technique is also seen 
to have implications on component design, such as TFT’s.  It is 
rare that a well-developed new processing method becomes 
available with such wide-ranging impact.  The displays application 
sector is certainly one of the areas which may be greatly influenced 
by photonic curing, with significant application opportunities in 
flexible and/or organic display application development efforts.  
Along with these technology implications come opportunities for 
creating new intellectual property, and ultimately new economic 
value and advantage in the market.  Timing is critical though, and 
fast-movers are often rewarded with early key patent filings and 
first-to-market advantages. 
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