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Abstract
Picolitre droplets of colloidal suspensions in a mixture of two

solvents are emitted by a drop-on-demand ink jet print head onto
coated and uncoated glass substrates. The evaporation rate and
internal flows inside the drying droplets are investigated and the
deposit pattern formed is related to the drying dynamics.

High-speed imaging of the droplet profile from the side al-
lows the droplet diameter, height, contact angle and volume to be
measured during evaporation. The internal flows throughout dry-
ing are visualized by following tracer particles within the fluid
with an inverted microscope. The resulting deposits at higher
solid content are imaged by scanning electron microscopy in or-
der to relate the morphology and fine structure to the internal
flows within the droplet.

The evaporation of binary solvent mixtures can cause a gra-
dient in the surface tension at the liquid-air interface, resulting
in a Marangoni flow. The ratio of solvent composition and the
surface tension of the more volatile solvent relative to the less
volatile solvent is varied, to manipulate the direction and mag-
nitude of any introduced Marangoni flow. Pure solvent droplets
are compared to mixed binary solvent systems, to determine the
importance of Marangoni flows on the morphology of the final
deposit.

Introduction
The ring deposits left after colloidal droplets dry are unde-

sirable for ink jet printed graphics and printed electronics, where
a homogeneous deposit is needed. The “coffee ring” stains de-
velop in colloidal droplets drying with a pinned contact line [1].
Self-pinning of colloidal droplets is common, particularly for high
solids content where particles wedge at the contact line prevent-
ing retraction. In order to conserve mass, a radial flow towards the
contact line replenishes evaporated liquid. This convective flow
transports particles inside the droplet to the periphery, building up
a ring stain. One route to countering these rings is to introduce a
Marangoni flow opposing the radial convective flow [2, 3].

Solvent mixtures can exhibit markedly different internal
flows and evaporation behavior to their pure component fluids
[4, 5]. Mixtures can be used to introduce a re-circulation flow,
as preferential evaporation of the more volatile solvent causes de-
pletion of that component at the contact line compared to the apex
[7]. The resulting surface tension gradient across the free surface
of the droplet causes fluid to flow from low to high surface ten-
sion. The magnitude of the Marangoni flow increases as the sur-
face tension gradient across the liquid-vapor interface increases.

We use ethylene glycol-water and ethanol-water mixtures
loaded with polystyrene spheres to determine the influence of
Marangoni flows on the end deposit. A trace amount of particles is

included to visualize internal flows within the droplet. The flows
are then linked to the deposit structure resulting from a higher
solid content using scanning electron microscopy.

Experimental
Single picolitre droplets were emitted from a drop-on-

demand Microfab print head (MJ-ABP-01, Horizon Instruments),
controlled by a Microfab JetDrive III Controller. The nozzle
orifice was 50 μm. Fluids consisted of mixtures of ethanol-water
or ethylene glycol-water filtered through a 0.45 μm pore filter.
These mixtures were chosen as both ethanol and ethylene glycol
have surface tensions lower than water, but ethanol is more
volatile and ethylene glycol is less volatile than water (table 1).
Therefore, any Marangoni flows should flow along the interface
from the apex to contact line for ethanol-water and from contact
line to apex for ethylene glycol-water mixtures.

Table 1. Fluid surface tensions, σ and vapor pressures, P, at
20◦C [6].

Fluid σ\ mNm−1 P\ kPa
Ethanol 22.39 5.9457
Ethylene glycol 48.43 0.0074
Water 72.88 2.3374

Tracer particles of 620-nm diameter polystyrene spheres
(Bangs Laboratories) were included at 0.01%v to follow internal
flows. Separately, 220-nm diameter spheres (Leeds University)
were added to the mixed solvents at 1%v solids, in order to view
end deposits by scanning electron microscopy (SEM). Ethanol
solutions with 1%v solids dried in the nozzle, so pure ethanol
with 1%v solids was not printed. Consequently, in order to print
ethanol-water solutions with 1%v solids, the humidity at the noz-
zle was raised to prevent clogging. This treatment was not needed
for ethylene glycol solutions, as ethylene glycol is a humectant.

Droplets were deposited onto coated and uncoated glass
substrates. Ethylene glycol mixtures were deposited onto un-
coated glass and ethanol mixtures onto coated glass to increase
the contact angle, improving side-on image acquisition. Glass
slides were coated with silane self-assembled monolayers by va-
por deposition of octadecyltrichlorosilane (OTS). The slides were
first cleaned in chromic acid and rinsed with high purity water
(MilliQ). Then the cleaned slides were placed in a vacuum desic-
cator with an open vial of OTS and the desiccator was evacuated.
After 24 hours the slides were removed, rinsed in ethanol and
dried in nitrogen.

Two experimental set-ups were used to capture images with
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a high-speed camera (Photron APX RS) from the side and from
below. To visualize internal flows, droplets were imaged from be-
low on an inverted microscope. Droplets were illuminated from
above at an angle to collect only light scattered from the parti-
cles. A 50× magnification objective (Olympus LMPLFN, NA
0.5, WD 10.6 mm) was used to magnify images. Illumination
from a cold LED light source (Beaglehole Instruments) prevented
uneven heating across the droplets. The ambient temperature was
measured with a thermohygrometer (Extech) and was kept be-
tween 19-23◦C. The relative humidity of the room was 45-50%.

Evaporation rates were determined by imaging the droplets
from the side. A 20× magnification objective (Nikon MPlan, NA
0.4, WD 10 mm) was used, along with the same light source, am-
bient temperature and humidity. Images were post-processed in
MATLAB to measure the diameter and height of the droplets by
determining the total number of pixels along the droplet baseline
and in the vertical direction respectively. The volume, V , and con-
tact angle, θ , were calculated assuming a spherical cap as

V =
πh
6

(
3R2 +h2) (1)

and

θ = 2tan−1
(

h
R

)
, (2)

where R is the radius of the contact area and h is the apex height.
This approximation is valid for picolitre droplets which have
Bond numbers, Bo � 1, so are not deformed by gravity.

Results and Discussion

Deposit Structure
SEM images of ethylene glycol-water deposits containing

1%v 220-nm spheres are presented in Fig. 1.

Figure 1. Deposits from 10− 90%v ethylene glycol-water, containing 1%v

220-nm spheres. Magnification varies and scale bars are 20 μm.

Ring deposits were observed for 90%v, 70%v and 50%v
ethylene glycol content. The 10%v and 30%v ethylene glycol to
water ratios gave more uniform deposits, with a thicker raised
edge for the 30%v ratio. Deposits from pure water or ethylene
glycol gave rings.

Figure 2. Center (i) and contact line (ii) sections for a) 90%v, b) 70%v, c)

50%v, d) 30%v and e) 10%v ethylene glycol content, containing 1%v 220-nm

spheres. Scale bars are 2μm.

The fine structure of ethylene glycol-water deposits at the
contact line and interior are compared in figure 2. The ethylene
glycol-water deposits were mostly a monolayer, with a second
layer starting for 10−50%v ethylene glycol. The close-up of the
contact line revealed that the outer edge remained a monolayer
even for ethylene glycol concentrations above 50%v, where the
droplet height at the periphery was too low for spheres to stack.

Interior packing was less dense for higher ethylene glycol
content. Ratios of 50%v ethylene glycol to water and above gave
ring deposits, with the interior displaying unfilled regions above
70%v ethylene glycol. The 10%v ethylene glycol content gave
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full coverage within the deposit.
Table 2 shows normalized ring widths for ethanol-water and

ethylene glycol-water deposits. All ethanol concentrations gave
ring deposits, with the thickest ring for 90%v ethanol compared
to the deposit diameter.

Table 2. Deposit ring widths, w, normalized by the radius, R.
The component volume is of ethanol or ethylene glycol (EG).

%v component 0 10 30 50 70 90 100
Ethanol, w/R 0.16 0.10 0.11 0.20 0.22 0.40 -
EG w/R 0.11 1.00 0.55 0.27 0.19 0.29 0.14

Evaporation of Mixture Components
Viewing droplets from the side showed that the initial evap-

oration rate was predominantly that of the more volatile compo-
nent and towards the end of drying the less volatile component
remained. This is consistent with the work of Sefiane [7].

The difference in evaporation rates is more obvious for ethy-
lene glycol-water compared to ethanol-water mixtures due to the
larger difference in component vapor pressures. A 50%v ethy-
lene glycol mixture is exemplified in Fig. 3 and a 30%v in Fig.
4. There is initially a large volume loss for low ethylene glycol
concentrations, with quick evaporation of mainly water, followed
by a long period of ethylene glycol evaporation. Less pronounced
preferential evaporation is observed for ethanol mixtures.

Figure 3. An evaporating droplet of 50% ethylene glycol with no solids,

at the start of drying. Initially, evaporation was mainly water with a large

volume decrease until 1.86 s. Then ethylene glycol evaporation dominated

until drying was complete at 232.1 s.
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Figure 4. Normalized volume loss with time for a 30%v ethylene glycol-

water mixture, where td is the drying time.

Internal Flows
By following the progression of spheres during drying, the

whole picture from developing flows inside the droplet to the end
resulting pattern can be traced. For pure water droplets, parti-
cle motion is radial towards the contact line following evapora-
tion driven flow. Comparatively, ethylene glycol-water droplets
initially have relatively fast particle motion radially towards the
contact line due to the preferential evaporation of water. Particle
motion then slows as the ethylene glycol component dominates,
but motion remains radially outwards. Fig. 5 shows particle tra-
jectories in a droplet of 10%v ethylene glycol during drying.

Figure 5. Particle trajectories for 10%v ethylene glycol-water containing

0.01%v 620 nm spheres. a) Motion of particles was initially relatively fast

towards the contact line (0–1 s). b) Radial motion slowed as ethylene glycol

became the main component (1–2 s). c) Radial motion during remainder of

drying (2 s onwards). The scale bar is 20μm.

For high ethylene glycol content there was no evidence of
Marangoni recirculation preventing radial flow to the contact
line. This was expected as the corresponding deposits showed
rings, and the surface tension gradient was lower at higher
ethylene glycol content. Particle motion was slow and radially
outwards throughout drying, particularly for 90%v ethylene
glycol. For low ethylene glycol content, i.e. 10%v ethylene
glycol, there was initially a faster radial flow towards the contact
line. The uniform deposit at low ethylene glycol content is not
fully explained by internal flows, and could be due to particles
not having time to reach the contact line after the transition to
ethylene glycol dominated evaporation, along with the increased
solid concentration from volume loss.

The particle distribution within droplets of 50%v and 90%v
ethanol is shown in Fig.s 6 and 7. The focus is just above the
substrate (not all particles remain in focus throughout drying).
For 10-50%v ethanol-water, the particles were initially distributed
throughout the entire droplet, with motion towards and away from
the contact line. As evaporation progressed (mainly ethanol), the
particles became restricted to the central region. At the transition
to a water droplet (with residual ethanol), particles were situated
at the center. The particle motion then slowed, and radial motion
to the contact line was observed due to evaporation driven flow.

For 90%v ethanol, particle velocities were slower, with cir-
culation towards and away from the contact line. Unlike the
10-50%v cases, there was less restriction of particles to the cen-
ter, and no distinct change to water dominated evaporation. The
70%v ethanol-water mixture was transitional between these two
regimes, with particles initially distributed throughout the droplet
and intermediate restriction to the droplet center.

For ethanol mixtures above 50%v ethanol, Marangoni flow
was not strong enough to gather particles at the droplet center.
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Figure 6. Inverted microscope images for 50%v ethanol-water with 0.01%v

620-nm spheres (white). Particles were initially distributed throughout the

entire droplet. As evaporation progressed particles were restricted to the

center. Times are fractions of the drying time, td . The scale bar is 20μm.

Figure 7. Inverted microscope images for 90%v ethanol-water with 0.01%v

620-nm spheres (white). Particle motion was slower for 10%v ethanol. The

particles moved towards and away from the contact line in a cycling motion.

Times are given as a fraction of the drying time, td . The scale bar is 20μm.

At high ethanol content (90%v), slower particle motion indicated
less Marangoni recirculation than for lower ethanol content, with
a ring forming in the dried droplet of 90%v ethanol containing
0.01%v 620-nm spheres. The thicker ring for the 90%v ethanol
droplet containing 1%v 220-nm spheres suggests early pinning
and enhancement of the ring deposit.

For mixtures of 10-50%v ethanol with 0.01%v solids, fast
Marangoni flow was seen while droplets still contained ethanol.
Despite the direction of Marangoni flow in ethanol droplets
enhancing convection, these flows prevented particles gathering
at the contact line, instead collecting particles at a central
stagnation point. The combination of larger particle velocities
and a higher contact angle at low ethanol content could explain
why particles were not trapped at the periphery.

After the transition to the water dominated regime, particles
progressed radially towards the contact line, following convective
evaporation-driven flow. For lower ethanol content the water
dominated regime had longer duration, hence particles had longer

to reach the contact line and form a ring. Normalized ring widths
for 10%v and 30%v ethanol were slightly lower than for water,
suggesting a reduction of the ring due to particle motion inwards
during the start of drying.

In addition, ring widths were compared relative to the solid
content at the transition. It was assumed that the transition for a
30%v ethanol droplet was when the droplet volume reached 70%.
At this point, the initial solid content of 1%v became 1.4%v.
Exponents from a double logarithmic plot of the normalized ring
width (table 2) against the solid volume fraction were 0.53±0.1
for ethanol-water and 0.78±0.1 for ethylene glycol-water. These
compare within error to the exponents found for single fluid
droplets [1, 8] of 0.50 for pinned droplets and 0.76 for de-pinning
droplets. This suggests that while Marangoni flow can collect
particles at the center, the solid volume fraction at the transition
to a single component fluid determines the ring width.

Conclusion
At low ethylene glycol content (10-30%v), uniform deposits

were observed, with rings forming at higher concentrations. The
internal flows in ethylene glycol mixtures showed relatively fast
radial progression of spheres during water dominated evapora-
tion, and slow radial motion thereafter with no Marangoni flow.
Ethanol-water deposits were all rings. Internal flows showed par-
ticle collection at the center for 10-50%v ethanol, during the ini-
tial drying phase, until water dominated evaporation gave radial
progression to the contact line. At 90%v particle motion was
slower, with easy pinning due to the lower contact angle, and
a ring deposit formed even at low particle concentration. Com-
parison of the solid content once a single component fluid was
reached, with the normalized ring width indicated that ring build
up occurred mainly after the transition to a pure fluid.
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