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Abstract 

Droplet vision systems are employed to study on-drum and 
on-media multi-droplet line topologies in an offset solid ink 
printer. The experimental methods employed speak to the extensive 
printer characteristics that can be quantitatively studied. Several 
straightforward and illuminating examples are given such as drop 
topology as a function of dpi, line uniformity, jet precision and 
repeatability.  A simple analytic model predicting topology is also 
shown.  This data helps show the many benefits of an inkjet offset 
printing process.  

Introduction  
The most common printing architecture for ink jet printers is 

direct printing.  Typically, water-based inks are used with an on-
demand inkjet printhead to directly deposit ink drops on the media.  
In a second ink jet printing architecture, known as “offset printing” 
or “indirect ink jet printing” [1], the printhead images onto an 
intermediate transfer drum that is coated by a liquid release layer, 
as shown in Figure 1.  

 

 
Fig 1. Offset Printing Process 

Xerox employs the offset printing architecture in a family of 
A4 printers, MFP’s, and A3 copiers.  A resin-based, solid ink is 
loaded into the printer in its solid form.  The ink is melted and 
dripped into a printhead.  The ink flows through fluidic manifold 
channels and is jetted out of microscopic orifices through the use 
of piezoelectric transducer (PZT) technology.  Jet geometries are 
carefully controlled and a specially designed electric pulse is 
applied to the PZT which together produce a precise and 
repeatable drop volume.  The drum temperature is controlled and 
maintains the ink in a ductile, viscoelastic state.  When the image 
is complete, it is transferred to the media by passing a preheated 
sheet between a high durometer synthetic pressure roller and the 
transfer drum.  A high pressure is developed in the nip that 
compresses the paper and ink layer, spreading the ink drops, and 

fusing them into the media.  The controlled temperature and 
pressure transfer process is referred to as a “transfix” or 
“transfuse” process.  Since the entire latent image is first formed 
on the drum, the resulting image quality of the offset architecture 
is highly repeatable.  This process forms a precision ink layer on 
the media and is relatively insensitive to media type compared to 
traditional inkjet and laser printers [2].   

Both customers and the competitive marketplace continue to 
demand higher speed printers with higher resolutions, and at lower 
costs.  To achieve these requirements, offset printer development 
needs to keep pace in many areas including increased transfix 
speeds and smaller drop masses.  These requirements create the 
need for improved understanding of the imaging and transfix 
processes and the need for refined measurement tools and 
methods.   

It is both essential and routine to evaluate and diagnose 
printer performance by studying the transfixed printer output. 
Unfortunately, the impact of the transfix process can confound 
printer performance by altering the ‘drop-on-drum’ state, which 
clouds the roles and relationships between the initial jetting, drop 
impact dynamics, solidification, and transfix. In this work, drop-
on-drum and bench top vision systems are employed as tools to 
study single-drop and line topologies. The experimental methods 
employed speak to the extensive printer characteristics that can be 
quantitatively studied. Several straightforward and illuminating 
examples are given such as drop topology as a function of dpi, line 
uniformity, and jet precision. 

Vision Systems 
The vision systems in this study are composed of a Drop-On-

Drum Vision System (DODVS) and Bench Top Microscope 
(BTM) shown in  Figure 2.  Both systems used identical optical 
paths and employed rigid frames and precision electromechanical 
stages to support accurate and high resolution images. 

 

 
Fig 2. Vision Systems 
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Select images of on-drum and transfixed drops as captured by the 
vision systems are shown in Figure 3. 
 

 
Fig. 3. Comparison of 24ng drops at 232dpi on drum (left) and media (right) 

Line Quantifier Code Application 
Experimental Measurements of Line Topology 

Unlike liquid inkjet, solid ink droplets quickly solidify and 
form precise and repeatable solid structures or line topologies.  
Such line topologies can be classified on statistical grounds by 
digital processing of images such as those shown in Fig. 3. This is 
accomplished using a custom MATLAB® program.  Each image 
is converted to black and white, rotated as necessary and analyzed 
using thresholding to identifying the boundary of each drop or 
drop cluster.  The location of each centroid is computed as is the 
drop or cluster length, width, and projected area. This information 
is used to determine the drop topology which is separated into four 
categories, i.e. single, double-, triple-, and continuous lines, the 
latter which are herein defined as composed of more than three 
coalesced drops. The percent projected area of the various drop 
types is calculated and used as a measure of overall line topology 
and quality. Typical results from the line quantifier algorithm are 
presented in Fig. 4. In this example it is found that for 24ng drops 
at 436dpi, the resulting ‘line’ topology consists of 7% single drops, 
78% double-drops, 15% triple-drops, and < 1% ‘continuous lines.’ 
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Fig. 4. Example of statistical output from the line quantifier code for 24ng 
drops at 436dpi 

The line quantifier code can be used to efficiently and 
automatically map drop types. For example, a summary of 
statistical mixed line topologies is provided in Fig. 5 for seven 
different dpi values. Such maps can be constructed for any 
combination of variables: drop mass, dpi, drum temperature, wave 
function, wave amplitude, color, color combination, etc. From Fig. 
5 one can accurately determine intermediate and extrapolated line 
topologies. One learns that: 
1. Only single drop, double-drop, and continuous line topologies 
dominate the spectrum with triple-drops not exceeding 15% of the 
total. 

2. The transition from single to continuous line topologies 
occurs for these printer conditions between 325 and 545dpi. 
3. One might expect an approximately 50%-50% single-double-
drop topology at approximately 385dpi and approximately a 50%-
50% double-quadruple+-drop topology at approximately 480dpi. 
4. The double-drop topology is dominant at over 80% near 400 
to 425dpi, but never achieves a 100% topology of its own. 
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Fig. 5. Summary of drop statistics as a function of dpi for md = 24ng, TD = 
15.6ºC: bar chart (left) and scatter plot (right). 

Jet Precision 
The relative precisions of individual jets are assessed using the line 
quantifier code by measuring the 2-D centroid locations. Low dpi 
values (< 300dpi) were used with 24ng drops to achieve single 
drop lines. The average of the x (horizontal) and y (vertical) 
centroid variations are computed by measuring the absolute 
difference between the actual and ideal distance of a given drop 
centroid. For a given dpi, all differences in single drop centroids 
can be measured and averaged and an example data set is 
summarized in Fig. 6.  Scatter in the y-direction was larger than 
that in the x-direction.  In general, the small deviations in projected 
drop centroid for single drop lines indicate that jet/drop precision 
is not a primary contributor to the single to double-drop transition. 
However, the variations in drop centroid are suspected of 
contributing to some drop line topology changes.  

 

0

2

4

6

8

10

12

100 150 200 250 300 350 400

C
en

tro
id

 V
ar

ia
tio

n 
(μ

m
)

dpi

y
x

 
Fig. 6. Average centroid variations between nearest neighbor single drops as 
a function of dpi for a fixed jet with 24ng drops 

Line Uniformity 
The uniformity and repeatability of individual inkjets are also 

readily investigated by studying the line topologies at different 
locations on the drum for fixed dpi using the line quantifier code.  
The percentages for each line topology type for 436dpi lines (md 

NIP 28 and Digital Fabrication 2012 417



 

 

=24ng) are listed in Figure 7. In this comparison the jet-to-jet 
performance is relatively consistent across the drum. 

 

 
Fig. 7. Average centroid variations between nearest neighbor single drops as 
a function of dpi for a fixed jet with 24ng drops 

Analytic Modeling of Line Topology 
Referring to the sketch of Fig. 8, knowing the average 

projected drop diameter d, average drop mass md, and ink density 
ρ, by assuming capillary dominance (small Bond number, Bo = ρ g 
R2/σ << 1 where g and σ are gravity and surface tension, 
respectively) the shape of the drop may be approximated by a 
spherical cap and the contact or wetting angle θ calculated from 
the implicit equation 
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Fig. 8. Sketch of idealized Bo << 1 drop-on-drum. 

Using eq. (1) and data similar to that in Fig. 3 and 4, the 
contact angle of black 24ng drops is found with good precision to 
be 40.5 ± 1.9º. The contact angle is a critical property to predict 
topologies for a variety of printer settings. Indeed, for a given drop 
mass, eq. (1) when rearranged shows that as expected the projected 
diameter increases with decreasing contact angle. Assuming that 
multi-drop lines are created as soon as two single drops first 
contact, and for the time being ignoring drop spreading and 
drawback effects during drop impact, the highest possible 
resolution (dpi) at which only single drops are present can be 
established. For contact angles in the range 20 πθ ≤≤ (in 
radians), the single drop domain is approximated by 

 
3/1

3sin2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

θ
ρπ

d

s
single m

Fdpi
          

                      (2) 

 
For small contact angles θ << 1, eq. (2) reduces to 

approximately  
 

)(2
4
1 3/7

3/1

θθρπ Ο
m

dpi
d

single +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<                       (3) 

dpi

d

2-dpi

d

N-dpi

d
 

Fig. 9. Highest idealized dpi setting for single drop (left), double-drop (middle), 
and N-drop (right) topological profiles. 

In a similar manner and as mentioned above, it is found from 
observations that the projected surface area of two coalesced 
drops, hereafter referred to as a double-drop, has the same width as 
a single drop, d.  In this case, it is assumed that the projected 
‘double-drop’ has a ‘semi-pill-like’ shape with boundaries 
consisting of two projected semi-circles of diameter d connected 
tangentially by a circular cylindrical body and with all contact 
lines satisfying the contact angle condition on the drum. The 
model is sketched in Fig. 9 (middle) and does not satisfy Laplace’s 
equation for a capillary surface of constant curvature. Nonetheless, 
further support for its application will be discussed in context with 
Fig. 10. For 20 πθ ≤≤ , the model ‘double-drop domain’ is 
approximated by 
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which for θ << 1 reduces to 
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This approach can be continued for N-tuple-drops as sketched 

in Fig. 9 (right) yielding the model equation for all N with 
20 πθ ≤≤ , 
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where )cos2()cos1( 2 θθ +−≡sF  is a geometric wetting function 
characterizing in part spherical end cap contributions, whereas 

θθ 2sin2 −≡cF  is a geometric function characterizing in part 

cylindrical drop body contributions. For θ << 1, eq. (6) reduces to  
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from which eqs. (3) and (5) can be confirmed for N = 1 and N = 2, 
respectively. Taking N → ∞, eq. (6) yields the minimum dpi for 
which a continuous line is formed under such assumptions; 
namely, 
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For dpi values above this incipient continuous line condition, 

the width of ‘continuous lines’ is expected to grow with increasing 
dpi.  

Eqs. (2)-(9) can be used to define various line topology 
regimes and limits as a simple function of drop mass, dpi, and 
temperature dependent properties ρ and θ. Eq. (6) is 
comprehensive and will be discussed shortly in connection with 
further presentation of experimental data.  

 
Line Topology Results and Discussion 

The experimental results of Fig. 5 are re-presented in Fig. 10 
along with the analytical solutions for the various drop types using 
eq. (6) with N = 1, 2, 3, 4, ∞, and a contact angle of 40.5º. The 
experimental observations tend to agree with the analytical 
predictions.  While this model is fairly simple in nature, 
corroborations with drop-on-drum images indicate that line-drop 
topologies may be simply estimated with knowledge of only drop 
properties such as dpi, drop mass, density and drum properties 
such as drum temperature and wettability (drop-drum contact 
angle). 
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Fig. 10.  Comparison of experimental (symbols) and model (lines, eq. 6) drop 
topologies with θ = 40.5º and ρ = 820kg/m3. 

Concerning predominately double-drop lines, the idealized 
critical minimum single drop spacing is determined by eq. (4) with 
N = 1 below which the drops first touch one another and coalesce, 
entering the double-drop topology.  It appears the onset of the 
double-drop mode is reasonably predicted.  From Fig. 10, for 24ng 
drops it appears the double-drop mode begins in earnest around 
400dpi. It is interesting to note that at 382dpi the gap spacing 
between drops is 12μm with average jet y-variation error of 
1.7±1.5μm. At 409dpi the gap spacing between single idealized 
drops is approximately 11.3μm with similar average jet y-variation 
error. Thus, the formation of the double drop mode is unlikely a 
result of jet accuracy and repeatability.  

A more plausible explanation for the double drop phenomena 
is forwarded in part by Jafari and Ashgriz [5] who identify a drop 
merge and drawback effect.  The complex but periodic double 
drop phenomena occurs when the maximum spread of a drop at 
impact causes it to collide and coalesce with the slightly oblong 
and potentially still molten previous drop on the drum. The most 
recently newly deployed drop, still molten, preferentially wets or 

even coalesces with the drop already on the drum and in an effort 
to minimize surface energy recoils in the direction of the 
previously deployed drop which is somewhat anchored by at least 
partial solidification. A larger-than-normal gap between ideal drop 
centroids is thus created and the next drop to be deployed lands 
cleanly on the drum in isolation. The process repeats. The cycle is 
altered at higher dpi eventually giving way to triple and more 
continuous lines. 

Conclusion 
Customers and competitive pressures continue to demand 

higher speed printers with higher quality, better reliability, and 
lower costs.  To continue to improve offset technology and 
achieve these demanding customer requirements, there is a need 
for better understanding of the imaging and transfix processes and 
the need for better measurement tools and methods.   In this work, 
drop-on-drum and bench-top vision systems are employed as tools 
to study the offset process in terms of drop placement and line 
topology. The experimental methods employed speak to the 
extensive printer characteristics that can be quantitatively studied.  

While the results are interesting in themselves, it is hoped that 
the results from this work reveal how an offset solid inkjet 
architecture is fundamentally different compared to toner-based 
lasers and traditional aqueous inkjet technologies.  These 
differences enable a truly differentiated technology able to 
approach the market in unique ways to satisfy the desired speed, 
quality, and costs.  The results show that an offset latent image 
formation process offers excellent drop position and drop/line 
repeatability.  Specifically, this is due to the fact that many 
traditional noise factors are avoided such as the basic need to even 
jet onto a varied media type as part of the printing process.  The 
offset drum has an engineered surface and accurately controlled 
temperature.  The process is also robust to image degrading 
physics such as aqueous ink wicking and show through, dot 
positional errors due to head to media spacing, paper deformation 
and paper cockle, and paper fiber effects on the surface of the ink 
and/or toner, etc.  
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