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Abstract 

This paper contends that current soft-proofing systems for 
print products should more correctly be described as soft-preview 
systems. They currently do not visualize the appearance and 
mechanical properties of a final printed and finished product with 
sufficient accuracy to be part of a formal enforceable contract 
between manufacturer and buyer. This paper discusses a 
systematic approach to assemble a measurement-based system 
which measures, models, renders and evaluates visual appearance 
attributes like gloss and elaborates on existing approaches and 
challenges that must be addressed in order to implement a high-
fidelity real-world soft proofing service for a scalable web-to-print 
application. 

Introduction 
Manufacturing today is dominated by commoditization of 

mass produced goods enabling a worldwide internet marketplace 
backed by enormous economies of scale. And yet the next 
generation of manufacturing technologies is already appearing on 
the horizon: personalized manufacturing where items are 
customized to a user’s exact specification and built to order. 
Central to a build–to-order system is a sophisticated front end 
giving users the ability to compare, contrast and select from a wide 
range of design choices while nonetheless limiting the end result to 
a manufacturable and functional final product. This system does 
not only have to simulate the functional aspect of the product 
under design, but also to generate a predictive rendering of the 
item;  reproducing the “look and feel” of the design such that a 
consumer is confident making a purchase and is satisfied with the 
final delivered product. 

The Graphic Arts Industry has used hard-copy proofs of to-
be-printed products for a long time as part of the contract between 
a Print Service Provider and a Print Buyer. However with the shift 
from analog to digital presses enabling the efficient production of 
short run jobs and with the increased submission of jobs through 
the web hard-copy proofs, which delay production and require 
extra resources, have become impractical. Software companies 
have responded to this challenge by building a number of different 
systems for visualizing manufactured print products. It is our 
contention, however, that these software packages are, for the most 
part, previews as opposed to proofing systems. 

A hard-copy proof is generally a part of the contract between 
a print buyer and a provider. A buyer expects that the final printed 
product will, perhaps within some manufacturing tolerances, 
closely resemble the proof. Failure to deliver a product that meets 
these criteria can be seen by the buyer as a failure to meet the 
terms of the agreed-upon contract, perhaps resulting in the print 
product having to be re-printed at the PSP’s expense. 

The soft-proofing systems available today fail by-in-large to 
meet this stringent standard of visual quality. What’s needed for 
web-to-print applications in specific and web-based storefronts for 

on-demand manufacturers in general is an enhanced digital version 
of the old contract proof. It must visually communicate the static 
and dynamic appearance and the relevant mechanical properties of 
the finished product. The resulting simulation should be driven by 
measurements of the physical characteristics and the 
manufacturing tolerances of each of the components of the final 
product, by analysis of the display technologies on which the 
simulation are displayed, and by an understanding of the human 
appearance perception models. Furthermore, the tools and 
procedures required for each of these steps have to support large 
scale solutions and their use cannot be limited to expert users 
alone. 

While we ultimately believe that a soft proofing system must 
simulate both the mechanical and visual properties of a print 
product, our efforts to date have focused on the visual appearance 
properties of print products, and we will not further discuss the 
simulation of mechanical properties of print products. 

The following sections discuss a framework for a 
measurement based soft proofing system that consists of four 
distinct elements, Measurement, Modeling, Rendering and 
Evaluation that are applied for each one of the visual appearance 
attributes gloss, color, translucency and texture as defined by the 
CIE. The state-of the art approaches and challenges to characterize 
and visualize gloss appearance are discussed in more detail as an 
essential part of a high quality, scalable service for a web-to-print 
application 

Framework for a soft-proofing system 
We have found the visual appearance framework from the 

CIE technical committee 1-65 [1] (Figure 1) a convenient and 
comprehensive framework for organizing our work. 

This framework divides the characterization of the visual 
appearance of materials into four categories: Color, Gloss, 
Translucency, and Texture. This schema has the advantage that it 
generally matches the analysis of visual appearance in both the 
vision and graphics communities as well as in the Graphic Arts 
industry.   

We furthermore separate the characterization of each of these 
visual appearance components into four steps: Measurement, 
Modeling, Rendering and Evaluation, with the understanding that 
solutions obtained for each step must be appropriate to the 
expected user base of a soft proofing system including Print 

Figure 1: Visual Appearance framework from CIE committee 1-65 [1] 
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Service Providers, and expert and non-expert buyers and must 
ultimately support commerce at internet scale. 

Measurement, in this instance, refers to sampling the physical 
manifestation of the visual appearance with measurement tools. 
For example, the color of a reflecting material might be measured 
with a spectrophotometer. The gloss of a material might be 
sampled with a gloss or haze meter, or more completely with a 
gonio-spectrophotometer.  

Ideally, the sampling of the material of interest would capture 
sufficient detail and accuracy to allow direct use of the data for 
predicting the appearance of the material for a simulation in a 
variety of environments. In practice, however, this is rarely the 
case. Instead, parameters of a mathematical model of the 
appearance characteristics under observation must be fit to the 
collected data. For example, the computer graphics community has 
developed a number of material reflection models including 
empirical models such as the Ward [2] model and more physically 
based models such as the Cook-Torrance [3] model to simulate 
material reflection for rendering systems. Fitting captured 
measurement data to these models allows both interpolating 
missing data and, in some cases, significantly reduces the quantity 
of data needed for prediction and simulation of material behavior 
from measurement data. 

Rendering is a key component of a soft-proofing system. In 
this case, rendering refers to creating a simulated view of the print 
product under consideration. This view might be a static view, or a 
dynamic view that allows interactive manipulation of the various 
components of the print product. For example, the proofing system 
might simulation the bending of a stiff material intended for a 
marketing brochure. However, as will be further explained later in 
this paper, the rendering system must consider both the print 
product under consideration and the environment in which the 
print product is to be evaluated.  

 Evaluation of the simulated result is the last important step. 
One important consideration, as noted, for example, by Sève [4]: 

“... it is customary to consider three aspects in the field of 
appearance: physical, physiological, and psychological. … 
For instance, and following mainly Bartleson’s idea [5], gloss 
and associated appearance aspects, such as haze, depend on 
the geometrical spatial distribution of light reflected by the 
objects (physical aspect); then this light distribution stimulates 
the human visual system, for which it is advisable to consider 
binocular vision (physiological aspect); and finally, thanks to 
long training, these stimuli are interpreted by the cortex and 
recognized as objects and as peculiar features of these objects 
(psychological aspect).” 

Critically, it must be noted that current display technologies 
will prevent us from a achieving a perfect simulation of the light 
reflected from a print product and reaching the visual system of an 
observer. Displays are limited by their color gamut, dynamic range 

and multiview capabilities such that they are inherently unable to 
generate a light field indistinguishable from the light field reflected 
from a manufactured product. Given these display limitations, it is 
our beliefs that the perception of material appearance that must 
ultimately drive the quality criteria developed for a soft proofing 
system, and that only techniques that are validated by the results of 
psycho-physical experiments will ultimately achieve a system that 
meets the quality standards necessary for a true soft proofing 
system. 

The Measurement, Modeling, Rendering and Evaluation 
framework can be applied to each of the visual appearance 
characteristics from the CIE visual appearance framework. In the 
next sections, we will examine how this framework can be applied 
to the analysis one of the CIE visual appearance components gloss. 

A brief overview of gloss 
Gloss, according to [1], is associated with the manner in which 
light is reflected from a material near, or at, the specular direction. 
Gloss is typically perceived independent of the color of the 
material itself, though some materials – metals in particular - 
influence the color of the specular reflection more strongly than 
others. Hunter [5] proposed that five types of gloss can be 
perceived including specular gloss (Figure 3). 

Though gloss clearly is strongly influenced by the physical 
properties of a material and its interaction with light, according to 
the CIE, gloss  is  “the  mode  of  appearance  by  which  reflected  
highlights of objects are perceived as superimposed on the surface 

due to the directionally selective properties of that surface” [7], 
and this ultimately is a psycho-physical phenomena. 

Substantial effort has been dedicated to understanding the 
psycho-physical nature of gloss perception. Hunter and Judd [8] 
noted a non-linear relationship between gloss perception and 
specular gloss (Figure 4a). Harrison & Poulter [9] demonstrated a 
relationship between gloss perception and surface luminance and 
noted that specular gloss was, by itself, insufficient for ranking 
samples of different gloss levels (Figure 4b). Aida [10] describes 
that the visual glossiness of colored paper depends primarily on the 
surface luminance. Kuo [11] measured just-noticeable-differences 
(JND) for specular gloss of materials illuminated by an 60o 
illuminant. Ferwerda and Pellacini [12] identified two dimensions 
of gloss from psycho-physical experiments using rendered images 
of spheres which resemble Hunter’s specular gloss and 
distinctness-of image. Obein [13] observed that “gloss scaling 
seems to be independent of the geometrical variations of the 
luminous flux at the surface of the sample”, a property described as 
“gloss constancy”. He further observed a higher sensitivity to gloss 
differences for binocular vision than for monocular vision. Blake 
and Bülthoff [14] further demonstrate a clear relationship between 
gloss perception and binocularity and “conclude that human visual 

Figure 3: Hunter's five types of gloss (from [1])  

Figure 2: Four steps for integrating a visual appearance 
characterization into a proofing system. 
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analysis seems to employ a physical model of the interaction of 
light with curved surfaces, a model firmly based on ray optics and 
differential geometry”. Nishida and Shinya [15] demonstrate that 
gloss matching can only be accurately achieved for similar shapes. 
Vangorp [24] demonstrates that objects with moderate surface 
undulations provide more stable perceptions of gloss than simple 
objects like spheres. Fleming [16] “demonstrates that subjects can 
match surface reflectance properties reliably and accurately in the 
absence of context, as long as the illumination is realistic. These 
findings suggest that subjects do use stored assumptions about the 
statistics of real-world illumination to estimate surface 
reflectance”. Phillips and Ferwerda [17] demonstrate that “limiting 
image dynamic range does change the apparent gloss of surfaces 
depicted in the images”. 

Together these studies indicate that great care must be taken 
when designing a proofing system for presenting a simulation of a 
glossy material. Of particular importance, for a user to form an 
accurate impression of the glossiness of a print product, is that the 
simulation must not only reproduce the reflectance properties of 
the material, but also the shape of the material. Furthermore, the 
interaction of the light field incident on the simulated object from 
the environment in which the print product is to be evaluated has to 
be properly modeled.  

The soft-proofing framework and gloss 
 A variety of devices are available for measuring the gloss of 

a material - from gloss meters, to haze meters to multi-angle 
measurement devices to gonio-spectrophotometers and different 
solutions using image sensing devices like cameras and scanners. 
The challenge, from a proofing perspective, is selecting a device 
that enables both capturing sufficient detail of the reflection 
characteristics of a material and that has a price point that allows 
wide-spread adoption of these devices – at the least by PSPs and 
professional buyers. Gloss meters are not sufficient for the task, as 
can be seen in Figure 4(b). Materials can, for example, be found 
with similar specular gloss but differing gloss lobe width and 
gonio-spectrophotometers are currently prohibitively expensive for 
widespread adoption. Another approach suggested by Ren et al. 
[19] uses a camera based systems for capturing surface reflectance. 
While this approaches show promise, key psychometric measures 
are missing to validate this approach. For example, while Kuo [11] 
proposes a metric for JND of specular gloss of materials 
illuminated by a 60o illuminant, the authors note that the thresholds 
will change when other visual gloss attributes beyond specular 

gloss are included. The study further notes that there isn’t an 
established viewing condition to study gloss as the Standard 
Observers Viewing condition when examining color. Missing, 
therefore, are more comprehensive metrics, which establish the 
relative importance of the standard appearance metrics, the JND 
visual thresholds for each of the metrics, and the conditions under 
which the various appearance metrics should be used. 

Modeling of glossy materials is similarly constrained by this 
lack of perceptual metrics for gloss perception. Ferwerda [12] 
develops a psychophysically-based model of surface gloss, with 
dimensions that are both physically and perceptually meaningful 
and provides scales that reflect our sensitivity to gloss variations. 
However the axes do not correspond to directly measurable 
physical quantities. Westlund and Meyer [18] propose a system for 
directly mapping ASTM standard appearance measures to 
computer graphics rendering models by numerical integration of 
rendering models. A challenge for using this approach for mapping 
appearance measures to rendering model parameters is that there 
are more appearance measures than degrees of freedom in common 
rendering models, and a lack of standards for prioritizing one 
measure over another. Recently, Forés Herranz [20] proposed a 
perceptually based error metric to be used for fitting rendering 
model parameters to gonio-spectrophotometer measurement data to 
improve the visual fidelity. Missing, however, is a direct 
comparison to a real-world scenario, with an actual physical object 
and a specific viewing environment.  

Previous research has shown that the visual appearance of a 
material is a function of both the material and the environment in 
which the material is examined. A proofing system must therefore 
not only correctly simulate the reflection of incident light from a 
material of interest, but properly simulate the environment in 
which the material is to be evaluated. While the color community 
has developed standard illuminants and light booths to standardize 
viewing conditions for color evaluation, no similar standards exists 
for gloss. Fleming [16] has shown that the light incident on a 
glossy surface must exhibit real-world statistics for proper gloss 
perception – thus it is likely that a light booth is not the proper 
viewing condition in which to form a correct impression of the 
gloss of a material. In addition, gloss is typically best appreciated 
by moving a glossy object under a light source, so it is likely that a 
system for proofing gloss will have to be an interactive system 
allowing real-time or at least near-real time manipulation of the 
object in the virtual environment. Building a real-time rendering 
system that renders a perceptually accurate scene has been one of 
the grand challenges in computer graphics. Research has been 
conducted in measuring the perceptual impact of light transport 
simplifications for achieving real time performance. For example, 
leveraging the work of Ramanarayanan [21] on “visual 
equivalence”, Křivánek [22] performed a set of psycho-physical 
experiments resulting in simple heuristics to guide visually 
equivalent and efficient rendering, and in a method for correcting 
energy losses in VPL renderings. This work provides a strong 
perceptual foundation for a popular and efficient class of global 
illumination algorithms. 

Another significant issue for soft-proofing systems is the 
limitations of current display technologies. Phillips [17] observes 
that that objects shown in SDR images are perceived to have lower 
gloss than objects shown in HDR images; and that gloss 

Figure 3: (a) Visual gloss vs measured gloss for different incident 
light angles, (b) Gloss lobes of two materials with similar specular 
gloss peaks but differing lobe width (both from [4]) 

(a) (b) 
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differences are less discriminable in SDR images than in HDR 
images. It is possible better tone mapping operators might help: 
Ledda [23] reports that in psycho-physical studies tone mapping 
operators seems to trade off contrast sensitivity with color 
accuracy. Missing, however, are studies which match real world 
scenes against rendered scenes. 
Ultimately, perceptual metrics must be developed that enable 
quantitative evaluations of comparisons of materials rendered in 
virtual scenes with corresponding real materials in similar 
environments. 

Conclusion 
In conclusion we have discussed the motivation for offering a 

high fidelity soft proofing solution for web-to-print applications, 
which is time and money. We have also highlighted the fact that 
soft proofs can only serve as substitutes for hardcopy contract 
proofs if they can accurately communicate the static and dynamic 
appearance and mechanical properties including manufacturing 
tolerances. In order to achieve that the visualizations need to be 
measurement based. This holds true not only for color, but also for 
gloss, translucency and texture as well as for mechanical 
properties. Within this paper we have as an example focused on the 
gloss attribute, discussed the four steps of a systematic approach: 
Measurement, Modeling, Rendering and Evaluation and provided 
an overview of existing approaches and challenges to make a high 
quality soft proofing solution that is scalable and suitable for real-
world web-to-print implementations a reality. 
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