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Abstract 

The airflow between the fast-moving substrate and stationary 
print heads in a web print press may cause print quality issues in 
high-speed, roll-to-roll printing applications.  We have studied the 
interactions between ink drops and the airflow in the gap between 
the printhead and substrate, by using an experimental flow chan-
nel and high-speed imaging. The results show: 1) the gap airflow 
is well approximated by a standard Couette flow profile; 2) the 
effect of gap airflow on the flight paths of main drops and satel-
lites is negligible; and 3) the interaction between the gap airflow 
and the wakes from the printed ink drops should be investigated as 
the primary source of aerodynamically-related print quality issues.  

Introduction 
The scope of commercial ink-jet printing has extended signif-

icantly in recent years.  For new applications such as single-pass 
graphical printing or even mass-production of printed electronics, 
there is a common trend towards greatly increased printing 
throughput achieved by printing on a continuously moving web 
substrate.  To achieve this, both the number of print heads used, 
and hence the number of available nozzles, as well as the speed of 
the moving substrate are increased. While there is some practical 
evidence of print quality issues related to higher print speed, the 
effect of the substrate motion-induced airflow on the dynamics of 
the printed drops has not been thoroughly investigated.  

The air flow between a moving substrate and a stationary wall 
is typically approximated by classic plane-Couette flow. While 
Couette-type flows have been extensively studied [1-2], few stud-
ies have been conducted specifically to investigate their implica-
tions for ink-jet printing. In their study of the effect of airflow on 
ink drop motion in wide-format printers, Link et al. [3] empirically 
and numerically confirmed that the airflow between a print head 
and a moving substrate conforms closely to the profile of a stand-
ard Couette flow. Their results also suggested a modest to strong 
intensity of turbulence near the substrate at substrate speeds up to 
2 m/s. However, as they could not obtain reliable PIV measure-
ments within 600 µm of the moving substrate, there is still uncer-
tainty in the validity of this conclusion.  Additionally, their simula-
tion predicted that the deviation of a 20 µm ink drop subjected to 
such cross-flow would be negligible in term of its effect on drop 
placement precision. While this prediction broadly agrees with our 
preliminary results on the effect of gap airflow on drop and satel-
lite trajectories, the experiences of industrial users seem to contra-
dict our observations.  One possible explanation is that the flow 
dynamics in the print gap during printing is more complex than 
previously assumed. For example, the interaction between the 
wakes of the jetted drops and the gap airflow needs to be investi-
gated as a potential cause. 

 
Experimental setup 

A model was constructed to investigate in real-time the sim-
plest scenario: the interaction between a continuously moving 

substrate and a single printing nozzle. The belt-drive of the print 
head motion stage from a HP ink-jet printer was adapted to form 
the moving substrate.  A section of the 4 mm-wide drive belt was 
enclosed within a PMMA channel. Two precision ball-bearings 
were used to support the belt as it passed through the channel to 
minimize belt oscillation and deflection. A 56 mm-long fixed car-
riage was mounted over the drive belt in the channel, maintaining 
a gap of 2 mm above the moving belt. At approximately 30 mm 
downstream from the leading edge of the carriage, a single-nozzle 
print head (MJ-AB-01-80, MicroFab Technologies USA) was used 
to eject drops of ethylene glycol (EG) as a model ink across the 
gap and on to the moving belt. A schematic diagram and an image 
of the flow visualization channel are shown in Figure 1. 

 

 
Figure 1  Schematic diagram and image of the moving-belt and airflow visual-
ization channel. The MicroFab printhead is raised above the fixed carriage for 
clarity. 

To visualize the airflow within the print gap, a mist of small 
water droplets 1 to 5 µm in diameter was injected approximately 
60 mm upstream from the carriage and transported into the gap by 
the air current above the moving belt.  The imaging arrangement 
was similar to the set-up described in our previous communication 
[4].   
With illumination from a high-power, long-duration flash (SI-
AD500, Specialised Imaging UK), an ultra high-speed video cam-
era (HPV-1, Shimadzu Japan) was used to capture the motion of 
the mist droplets in the print gap at 125k fps.  Image analysis with 
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an ImageJ-based routine was then used to track the trajectories of 
the mist droplets in order to analyze the air flow pattern [5, 6].  
The deviation of the flight paths of the drops and satellites within 
the print gap was also evaluated by using a stroboscopic imaging 
technique [7] in which a 20 ns duration spark flash (MiniStrobokin 
40, HSPS Germany) and a CCD camera (EC1020, Prosilica USA) 
were used to capture high-resolution still frames showing jetted 
drops, ligaments and satellites for image analysis. 

Results 

Airflow profile in the print gap 
One of the primary aims of the investigation was to study the 

airflow in the print gap in its entirety, i.e. from the surface of the 
moving belt to the lower surface of the carriage. Figure 2a shows a 
typical frame (grayscale inverted for particle tracking analysis) 
from the high-speed videos with the flight paths of mist droplets 
identified by the ImageJ routine. Initial observations indicated that 
the mist droplets are effective as tracers for air flow, as their tra-
jectories follow the belt motion closely as they move across the 
field of view.  In addition, the droplets are shown to move at simi-
lar velocities at the same height above the moving belt.  As the 
depth of focus of our imaging system is greater than the nozzle 
diameter, this suggests that the air flow is relatively uniform across 
the width of the belt around the nozzle. Therefore, our experi-
mental setup reasonably approximates a 2-D flow field between 
two boundaries with infinite depth, i.e. the effect of the boundary 
layers at the PMMA walls on the airflow around the nozzle is neg-
ligible.  As expected, the gap airflow conforms to the standard, 
linear Couette flow profile over the belt speed range investigated. 
Figure 2b shows the velocity profile for a belt velocity of 1 m/s.  
Although Link et al. [3] hypothesized that turbulent flow may 
occur close to the moving substrate, no evident of significant tur-
bulence or the existence of vortices was observed on or near the 
moving belt in our experiments.  

Jetted drop and ligament deflection 
Figure 3 shows single-flash images of ethylene glycol drops 

with attached ligaments just before impact on the moving belt 
travelling at speeds range from 0 to 2 m/s. The main drops are 
approximately 80 µm in diameter, with an average velocity of 6 
m/s.  Reference lines are added to the images to indicate the center 
axis of the drop and ligament when the belt is stationary.  As the 
belt speed increases, the main drops and their trailing satellites 
shift in the direction of the belt motion.  The ligaments become 
bowed and appear to elongate slightly.  Using a custom image 
analysis code, the center positions of the main drop, ligament, and 
individual satellites can be determined as functions of belt speed.  
Averaged over more than 10 images for each value of belt speed, 
these results indicate a linear increase in the magnitude of deflec-
tion as the belt speed increases, as shown in Figure 4. 
 
 
 

 
 
Figure 2  a) Inverted shadowgraph image of mist traces above a  belt moving 
at 1 m/s, with vectors showing the motion of individual mist droplets, and b) 
velocity profile of the mist droplets. 

 
Figure 3 Jetted ethylene glycol drops, ligaments, and satellites moving from 
right to left across the print gap at belt (substrate) speeds from 0 to 2 m/s. 
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Although the print gap airflow has been shown to have an ef-
fect on the jetted drops and satellites trajectories, the effects ob-
served are generally minimal.  For example, for substrate speeds 
up to 2 m/s the average sideways deflection of the trailing satellite 
is less than the diameter of the satellite itself. This observation is 
in general agreement with the simulation results of Link et al. [3], 
who estimate the shift in the trajectory of a 20 µm-diameter drop 
to be around 13 µm at a substrate speed of 1 m/s (the trailing satel-
lites in our experiments are typically around 25-30 µm in diame-
ter). In addition, the average magnitudes of deflections observed 
are significantly less than the final spreading radius of the deposit-
ed main drop (approximately 80-100 µm). As the ligaments and 
satellites generally reach the substrate within tens of µs after the 
main drops, they normally fall within the splats formed by the 
deposited main drops, and hence have minimal impact on print 
quality. 

 
Figure 4 Deflections of the main drops, ligaments, and satellites as a function 
of substrate speed. 

Interaction between gap airflow and wakes of the 
jetted drops and satellites 

By jetting drops and satellites on to the moving belt while 
monitoring the gap airflow with the mist droplets, the interaction 
between the gap airflow and the wakes trailing behind the jetted 
drops can be visualized. Figure 5 consists of snapshots from the 
high-speed videos showing how the airflow in the gap is disturbed 
by the passage of the large main drop, as indicated by the mist 
droplet traces.  It can be clearly seen that the mist droplets in or 

near the path of the main drops are deflected from their original 
trajectories and shifted toward the moving substrate.   

At low substrate speed (around 0.5 m/s), the disturbance 
caused by the passing drop is fairly localized, as shown in Figure 
5a.  In addition, the wake of the drop, indicated by the region in 
which the trajectories of the mist droplets are significantly dis-
turbed, is nearly symmetrical above the trail of the passing main 
drop.  This suggests minimal interaction between the drop wake 
and the gap airflow. As the substrate speed increases, the wake of 
the passing drop becomes increasingly asymmetric, i.e. most of the 
mist droplet deflections begin downstream from the main drop 
trail, as shown in Figures 5c and 5d. The implication is that the 
disturbances caused by the passing drop are being carried further 
downstream by the gap air flow at higher substrate speed, poten-
tially changing the air flow pattern and affecting drops jetted from 
the neighboring nozzles. 

Discussion and summary 
Preliminary results of an experimental study of the print gap 

airflow dynamics during ink-jet printing are presented. Visualizing 
the gap airflow by using mist droplets and high-speed video imag-
ing technique, we have confirmed that the airflow pattern between 
a fixed wall (print head) and a moving substrate resembles the 
standard laminar Couette flow profile as reported elsewhere. How-
ever, our observation of airflow dynamics extremely close to the 
moving substrate reveals a lack of turbulence and vortices, contra-
ry to previously reported simulation results.   

Our experiments also show that even at high substrate speeds 
(greater than 3 m/s) the deflections of the drop and satellites trajec-
tories caused by the air flow are relatively minor. Our observations 
are in general agreement with the suggestion that there is insuffi-
cient kinetic energy in the gap airflow to affect the flight paths of 
the main drops or large satellites [3]. However, as the model ink 
(ethylene glycol) and drive waveform used in our study produced 
well-behaved jets and drops, with a minimal number of relatively 
large satellites trailing a short distance behind the main drop, our 
results may not be representative of situations when more complex 
and problematic inks are printed.  For example, printing under less 
ideal condition on an industrial scale may produce a large number 
of µm and sub-µm sized micro-satellites.  

 

 
Figure 5  Disturbance of the gap air flow caused by the passage of a large jetted drop (approximately 80 µm in diameter, travelling at ~3.3 m/s ) with substrate 
speeds of a) 0.5 m/s, b) 1.0 m/s, c) 1.5 m/s, and d) 2 m/s. 
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These might be expected to behave in a similar manner to the 

water mist droplets used to visualize the airflow in this study 
which were 1 to 5 µm in diameter.  Such micro-satellites can be 
easily disturbed by the gap airflow even at relatively slow sub-
strate speeds and thus cause print quality issues. Further work is 
needed to study the dynamics of micro-satellites in the gap airflow. 
In addition, when satellites are produced late in the droplet ejection 
process, these will trail further behind the main drops in flight and 
therefore may not be shielded by the wakes produced by the main 
drops. Under such conditions, it is possible that these late satellites 
may be significantly disturbed by the gap airflow.  

Finally, we have studied the disturbances in the gap airflow 
caused by the wake of the passing drop. The extent to which these 
disturbances are carried downstream from the printed drop is 
shown to be dependent to the substrate speed. At substrate speeds 
greater than 1 m/s, the trajectories of the deflected mist droplets 
indicate that the disturbances may extend up to millimeters down-
stream from the printed drop, potentially altering the airflow pat-
tern around adjacent nozzles and drops. In addition, while the 
Reynolds number for the gap airflow investigated here is within 
the reported laminar regime for Couette flow (Re < 480), it is well 
within the turbulence transition regime for a disturbed Couette 
flow (Re = 280-360) [2].  As injecting a printed drop into the gap 
can be considered as introducing a disturbance, it is possible that a 
specific jetting frequency might trigger the onset of turbulence. 
Further investigation, including monitoring of the airflow further 
downstream over a longer period of time after drop injection, 
needs to be considered to extend our understanding of this possi-
bility. 
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