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Abstract 
In continuous inkjet devices, an applied perturbation, such as 

acoustic vibration or thermal modulation, is used to drive the 
Rayleigh-Plateau instability to cause regular breakup of liquid 
microjets into droplets of controlled size.  Background fluctuations 
and other processes contribute to subtle variations in droplet 
velocity within the droplet stream.  These velocity variations—
droplet velocity jitter—can be observed by stroboscopy or by laser 
detection.  The fluctuations in droplet position or period are 
influenced by the details of the jet breakup process, and 
measurement of the droplet fluctuations as a function of distance 
along the droplet stream provide estimates of the fundamental 
noise on the jet. 

Introduction  
Droplet velocity noise is of practical importance in thermally 

stimulated continuous inkjet technology, wherein thousands of 
continuous streams of droplets are generated continuously by 
thermally stimulated jet break-up. In practice, print drops and catch 
drops are produced, with the former being directed to paper to 
generate a printed image, while the latter are directed towards a 
gutter, collected and recirculated.  Current Kodak Stream 
technology employs a large drop print mode wherein the smaller 
catch drops are separated from the larger print drops by differential 
deflection in a cross flow of air.  Small-drop velocity fluctuations 
are kept sufficiently small that consecutive catch drops do not 
merge prior to their arrival to the deflection zone, ensuring that 
there is sufficient mass differentiation for deflection. 

Fluctuations on a Jet 
In order to understand droplet velocity jitter, it is helpful to 

start with the fundamentals of droplet generation.  The approach 
we use here is based on the condition for jet break-up driven by the 
Rayleigh-Plateau instability with the retarding effect of surface 
tension on the average velocity of droplets generated from jet 
break-up.  Generation of drops of fluid via jet breakup can be 
controlled by low-energy pulses applied periodically to a heater 
situated around a jet orifice [1].  These heating pulses cause 
changes in the temperature of the fluid and its associated properties 
and can be considered as mathematically equivalent to applying a 
radial perturbation to the jet.  One can reason that at the time of jet 
break-up tb, the perturbation amplitude ξ has grown (at growth rate 
α) from its initial value ξi to equal the jet radius R causing the 
droplets to separate from the stream: [1, 2] 
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The growth rate α depends on the properties of the fluid (i.e., 
surface tension, viscosity and density), the jet radius, and the 
frequency of stimulation.  Successive break-up events convert the 

mass flow of the fluid column to a mass flow of droplets.  On 
average, the momentum of the jet must equal the momentum of the 
stream of droplets after break-up, and the average droplet velocity 
(vdrop) is thus related to the average jet velocity (vjet) by [3]: 
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Here, σ is the dynamic surface tension (i.e. surface tension on 
a time scale of the order of the jet break-up time) and ρ is the mass 
density of the fluid.  The column of fluid jetted from the nozzle has 
a momentum per unit length dictated by the jet velocity, the jet 
radius, and the density.  Any portion of this stream that is 
partitioned into a droplet acquires the droplet velocity of Equation 
2, regardless of size.  In the laboratory, this point can be 
appreciated by generating droplets of vastly different sizes by 
changing the frequency of heat pulses applied and maintaining a 
constant energy per droplet.  Thus, while the time between break-
up events determines the mass of the droplet formed it should have 
no effect on the droplet velocity.  In contrast, fluctuations in the jet 
velocity will naturally translate to fluctuations in the droplet 
velocity as can be appreciated by examination of Equation 2.   

Fluctuations in the break-up time arising from fluctuations in 
effective stimulation (Equation 1) are also expected to alter the 
droplet velocity.  The effect of a fluctuating jet velocity can be 
found by differentiation of Equation 2 to find the relative velocity 
fluctuation (i.e., δv/v) for droplets as a function of the relative 
velocity fluctuation for the jet: 
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  Equation 1, with a growth rate α appropriate for the fluid 
properties, geometry, and stimulation frequency does an excellent 
job of predicting break-up times for flows characterized by low 
Weber number, despite the departure from simple linear behavior 
near jet break-up, where the perturbation has grown to dominate 
the jet geometry.  In this break-up regime, hereafter called the 
“pinch-off region”, the fluid volume that couples the emerging 
droplet to the jet becomes vanishingly small.  Fluctuations in fluid 
properties in this regime could have significant impact on the 
droplet velocity.  For example, a fluctuating surface tension would 
produce a fluctuating droplet velocity in accordance with Equation 
2.  Furthermore, fluctuations in surface tension and viscosity could 
produce variations in recoil effects not accounted for in Equation 
2, and formation of the droplet and the receding filament may be 
characterized by fluctuations in droplet size and velocity and 
filament size and recoil momentum.  
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In the next section we derive relationships between the 
experimentally observed fluctuating quantities and the fluctuating 
quantities in the jet and droplet stream.  We will make use of the 
relationships expressed in Equations. 4 – 7 below.  As break-up 
length (L) is more readily measured than break-up time, it is 
helpful to make use of the fact that they are related through the jet 
velocity: 

jet
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Fluctuations in break-up time can thus be related to 
fluctuations in break-up length and jet velocity:  
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Furthermore, differentiating Equation 2 yields: 

j
i

i
b tt δ

ξ
δξ

α
δ ≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛−
=

1  (6) 

Hence, fluctuations in break-up length and jet velocity can be 
related to the fluctuations in radial perturbation, which are believed 
to arise from boundary layer fluctuations in the nozzle. 

Finally, as we have argued that there is likely a significant 
contribution to drop velocity fluctuations that has its origins at jet 
break-up in the pinch-off region (and not in the nozzle); we 
introduce a separate fluctuation in break-up time from this cause.  
We make a distinction between variation in break-up time δtj from 
fluctuations on the jet as it emerges from the nozzle and a variation 
in break-up time δtp from fluctuations in the pinch-off region: 

δtb′ = δtj + δtp (7) 

Experimental Jitter 
Shown in Figure 1 is a schematic of a jet emerging from a 

nozzle plate and breaking up into droplets.  The break-up length L 
and its fluctuation δL are indicated.   Also indicated in the figure, 
for two adjacent droplets, are position and time differences that are 
measured experimentally (between droplet centers indicated by red 
vertical dashed lines).  The break-up length indicated in Figure 1 is 
the distance from the nozzle plate to the center of the droplet as it 
emerges from the jet.   
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Figure 1. Schematic of stimulated fluid jet emerging from a nozzle plate and 
associated droplet stream is shown.  The indicated break-up length, position, 
droplet spacing, time differences, and their fluctuations are discussed in the 
text. 

The position x of a droplet in the stream is the sum of the 
breakup length L and the flight distance from break-up (x-L) in the 
direction along the jet axis.  Hence, in terms of time and velocity 
the position is given by: 

( )bdropbjet ttvtvx −+=  (8) 

Taking the differential of Equation 8, using Equation 4, and 
using the fact that t is controlled by the strobe and δt is effectively 
zero we have: 
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In the laser detection scheme, the position x is fixed by 
experiment and, therefore, δx is effectively zero, whereas δt is 
measured.  One then finds that the quantity -vdropδt is equal to the 
right side of Equation 9.   The experimentally measured quantity is 
the root-mean-square fluctuation, or standard deviation.  Hence, in 
the laser detection scheme we find: 
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where σt is the measured standard deviation in arrival time 
(i.e., σt= √<δt2>).  Evaluation of the squared term in brackets 
requires some care.  In particular, some fluctuations are likely 
correlated with one another, while other fluctuating quantities are 
statistically independent.  In the former case, cross terms are not 
expected to vanish, whereas in the latter case, the cross terms can 
be expected to average to zero. 

Experimental Jitter with Contributions from the 
Nozzle and Pinch-off Regions 

As discussed earlier, the break-up time can be influenced by 
fluctuations in the nozzle bore and pinch-off regions.  The effect of 
the fluctuations in the nozzle on the droplet velocity was described 
above (Equation 3).  The effects of fluctuations at pinch-off on 
droplet velocity, however, have not been described in any detail.  
For now we simply consider two contributions to fluctuations in 
droplet velocity.  Similar to the break-up time fluctuations of 
Equation 7, we write the drop velocity fluctuations as: 

pjdrop δvvv += δδ , (11) 

where δvj and δvp are respective contributions from jet 
velocity fluctuations and fluctuations in the pinch-off region to 
fluctuations in droplet velocity.   

We further assume that the drop velocity fluctuations δvp 
caused by fluctuations in the pinch-off region are related to the 
break-up time fluctuations δtp caused by fluctuations in that region.  
Including separate contributions from nozzle and pinch-off regions 
to the fluctuations in break-up time (i.e., δt =δtj+δtp) and droplet 
velocity (i.e, Equation 11), Equation 10 becomes: 
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While we expect δvj/vdrop (≡Jj) and δvp/vdrop (≡Jp) to be 

correlated, fluctuations introduced at pinch-off may be statistically 
independent from those occurring at the nozzle.  In this case, δtp is 
treated as statistically independent from all the other fluctuating 
quantities, except Jp (the fractional velocity jitter from pinch-off), 
which is presumably correlated with δtp.  Similarly, δvjet/vjet (≡Jjet) 
is presumed to be correlated with δtj (as well as with the radial 
perturbation fluctuation δξi).  Squaring Equation 12 and setting 
cross terms for statistically independent quantities to zero, we find: 
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Here we use a, b, and c to denote respective constant, linear, 
and quadratic coefficients for the dependence of (vdropσt)2

 on (x-L). 

Experimental Details 
This work employed a test stand with a fixture to mount and 

translate an ink manifold and nozzle array assembly.  In this test 
stand, three translation stages along orthogonal axes enable 
movement of the nozzle array along an optical axis normal to the 
plane containing the fluid jetted from the array (z), along the array 
axis (y), and along the jet axis (x).  The y, x, and z axes are 
respectively for selecting the jet to be probed, the distance from the 
nozzle plate, and the focus. 

A schematic of the drop detection apparatus is shown in 
Figure 2.  The y translation stage is moved until a particular jet axis 
intersects the beam axis of a diode laser.  As droplets travel 
downward through the stream they modulate the laser beam as they 
pass through it.  A lens system images a portion of the curtain of 
jets onto a photodetector.  The signal from the photodetector is 
input to a drop detection circuit that generates a positive pulse 
from the modulation of light intensity that occurs when a droplet 
passes through the laser beam.  The output of the drop detection 
circuit is input to a computer controlled system that records drop 
arrival times, departure times and peak heights and computes 
statistics on specified sequences of droplets at specified locations 
along a jet. 
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Figure. 2. Schematic of the diode laser drop detection scheme.  As drops 
travel downward through the stream, they intersect the laser beam modulating 
the intensity of light that reaches the detector through the sampling slit. 

The spatial magnification provided by the lens system is a 
factor of ten.  A slit placed immediately in front of the detector has 
a width (y direction) of 150 μm and a height (x direction) of 25 
μm.  Hence, the region of the jet curtain that is imaged onto the 
detector is 15 μm x 2.5 mm.  The width resolution is sufficient to 
resolve individual jets at 600 npi, and the height resolution is 
sufficient to resolve individual droplets (roughly 17 μm diameter 
fundamental droplets from 9.6 μm diameter nozzles).  Although 
not shown in Figure 2, the apparatus also can be operated to 
capture images of the droplet stream.  During imaging mode, a 

LED is strobed synchronously with drop generation and the drops 
are imaged using a CCD camera. 

Results 
In order to verify the models, a commercial black pigmented 

ink was jetted in our system at sufficient pressure to produce 
droplet velocities of roughly 20 m/s. A single nozzle was operated 
at the experimentally determined optimum frequency, where BOL 
(L) was minimized using constant power stimulation. The 
amplitude of the voltage pulse to the heater was then varied with a 
fixed pulse width in order to obtain a series of stimulation levels. 

The BOL (L) and droplet velocity (vdrop) were determined 
stroboscopically at each stimulation level; L decreases with 
increasing stimulation while vdrop was essentially constant.  Next, 
the drop statistics were obtained using the laser-photodetecteor 
drop detection system, including the arrival time variation for the 
droplets as a function of distance from the nozzle. Data were 
collected from just before jet break-up (~ 0.5 mm) to 2 mm beyond 
the nozzle plate.  At each voltage level, the values of L and vdrop 
were used to determine the effective stimulation ξi from Equations 
1 and 4, using the physical properties of the ink to calculate vjet and 
the growth rate α .  Additionally, the measured L and vdrop were 
used with the arrival time variance (σt) as a function of distance 
from break-off to determine the coefficients a-c of Equation 13.  
Figure 3 illustrates the data gathered at the highest stimulation and 
the quadratic fit obtained.  In this exercise, the fit was constrained 
to truncate at L since there is no drop velocity variation prior to 
break-off.   
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Figure. 3. Data and model fit for a single isolated jet making droplets at the 
optimum frequency.  Data is for the highest stimulation value used  in the 
experiment. 

The coefficients from each stimulation level can be used to 
determine Jjet, Jp and Jj for each condition (the jet velocity jitter 
and the contributions to drop velocity jitter from pinch-off and the 
jet as discussed above).  In order to calculate these quantities, two 
additional assumptions are required.  The first is that the break-up 
time fluctuations from noise at pinch-off scale inversely with 
stimulation as described in Equation 14.  Second, it is logical to 
constrain the pinch-off contribution to droplet velocity noise to 
scale with this break-up time fluctuation as described in Equation 
15.  In these equations g and h are constants. 
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Adding the relationship between Jj and Jjet from Equation 3, 
one can then use the stimulation dependent coefficients to 
determine the noise parameters for the jet (i.e., δξi, Jjet, g and h).  
Results for the quadratic fitting coefficients are shown in Figs. 3a – 
3c, with values normalized to the lowest stimulation value.  As 
stimulation is increased, the overall arrival time variation 
decreases, as does each of the fitting coefficients.   
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Figure 4. Experimental values (diamonds) and modeled values (squares) for 
fitting parameters a, b, and c used to fit arrival time fluctuation data to 
Equation 13. The model data are generated by using a least squares method 
to determine the parameter set δξi, Jjet, g and h that gives the best overall fit for 
all three parameters a, b, and c as a function of stimulation. 
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Figure 5. Contributions of Jp (diamonds) and Jj (circles) to the droplet 
velocity jitter as a function of stimulation.  The data are normalized to the 
value of Jp at the lowest stimulation. 

Based on the fitted noise parameters for the jet the relative 
contributions of fluctuations in the nozzle bore and at pinch off are 
determined as a function of stimulation (Figure 5). As shown in 
Figure 5, the contribution of fluctuations in the nozzle bore is 
relatively constant as a function of stimulation.  The contribution 

from fluctuations at pinch-off dominate at low stimulation levels 
and become somewhat less dominant as stimulation is increased.  
The original premise that fluctuations in fluid properties in pinch-
off region could have significant impact on the droplet velocity is 
supported by these results. As mentioned earlier, the fluid volume 
that couples the emerging droplet to the jet becomes vanishingly 
small in the region of pinch-off.  In retrospect, it is not surprising 
that there is a significant contribution from the portion of the jet 
that is least stable. 

Conclusions  
Here we have described our analysis on a single jet at a fixed 

stimulation frequency and shown that the contributions to jitter in 
the pinch-off region dominate the overall droplet velocity jitter.  
Additional experiments have been conducted in our labs to tease 
out the relative effects of other aspects of droplet generation 
including frequency, fluid properties as well as stimulating 
multiple jets in an array.  The mathematical and experimental 
treatment discussed here has been valuable in understanding the 
noise in a continuous drop generation system and enabling the 
design for robustness required for a commercial system. 
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