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Abstract

Stability of a conducting drop hanging from a nozzle in an
electric field with corona discharge was examined theoretically
for the first time. By this static model with linear stability anal-
ysis, stability of electrostatic inkjet process was estimated. The
basic equations, the augmented Young-Laplace equation for drop
shape and the Poisson equation for electric field, were coupled
and solved by the Finite Element Method. According to the initial
condition of its shape, a drop is deformed and subject to corona
discharge with the increment of non-dimensional electric field. It
was found this static model was applicable to estimate the range
of stable jetting and the existence of corona discharge reduces its
stable jetting range.

Introduction

Since the first inkjet printer, gMingographh appeared in mar-
ket from Seimens Co., Ltd.[1][2], the inkjet technology has pro-
gressed tremendously in quality and print speed. Although the
electrostatic inkjet technology has not applied to commercial
printers, it is attractive in the industrial application. It can make
various forms of jet, such as individual drop (drop on demand)[3],
micro spray[4] or spindle[5] that could be utilized to make fibers.
Additionally, it could jet highly viscous liquid[6] and make such a
super fine drop as less than 1 femto litter[3]. Fundamental under-
stainding is indispensable to apply this technology to industrial
usages so that the stability of an electrified drop hanging from a
nozzle was examined theoretically. Although the jetting is a dy-
namic process, it was found that the electro-hydrostatic approach
including linear stability analysis was useful to estimate the range
of stable jetting.

Without corona discharge, several authors reported the ef-
fect of electrostatic field on a drop hanging from a nozzle[7]-
[12]. Although the corona discharge occurs sometimes inevitably
especially in the nozzle-to-plate geometry, the theoretical study
is limited to calculate the electrostatic field[13]. Providing the
fundamental model related to electrostatic inkjet phenomena with
corona discharge is the goal of this research.

Theoretical Model
Calculation Domain

Fig.1 shows an axisymmetric, conducting drop hanging from
anozzle of length H,. The nozzle is at potential ug and the bottom
plate, a distance H; from the tip of the nozzle, is grounded. L is
length between the axis of the nozzle and asymptotic boundary
of calculation domain. The z-axis is parallel to gravity and the
horizontal plane z = 0 is located at the tip of the nozzle.

Two coordinate systems are used with the origins of both
systems located in the plane z = z. along the axis of symmetry. A
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Figure 1. Pseudo-electrostatic inkjet model: a drop hanging from a

nozzle in an axisymmetric pin-to-plate system. Syozzir:surface of nozzle,
Ssorrom :Surface of plate electrode, S;y :surface of a droplet, Ssyu :surface of
symmetric plane, Srop, Sasy :surface of calculation boundary, V) :calculation
domain, spherical-coordinate area, V|, V,:calculation domain, cylindrical-
coordinate area.

spherical coordinate system (r, @, ¢) is applied to the domain V;
where r is the radial coordinate and 0 and ¢ are the meridional and
azimuthal angles, respectively. A cylindrical coordinate system
(x,¢,z), where x is the projection of r onto the plane z = z, is
applied to all other domains. Because an unbounded domain is
impracticable, the length L must be finite. To reduce the influence
of the length L, cylindrical coordinate domain V] is added to the
domain Vj.

Governing Equations and Boundary Conditions
The equilibrium shape of an inviscid and conductive drop
hanging from a nozzle is governed by the augmented Young-
Laplace equation (eq.(1)) on the interface between the drop and
the ambient fluid (air)[7][8]. With corona discharge, the electro-
static pressure is governed by non-linear differential equation, the
Poisson equation(eq.(2)) and the conservation of charge(eq.(3)).

Vs -ny =K+ G+ NeE? )
Viu=—pg 2
V.prVu=0 (3)

where all the paramters in above equations are dimensionless.
Lengths are measured in unit of R, radius of nozzle and po-
tential is in unit of iy, applied voltage, i.e. V = RV, u=
ii/ip. Those parameters with/without tilde above them are
dimensional/dimension-less respectively.  Reference pressure
K(= RApy/o) is the pressure difference Apy between the drop
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and the ambient air. E,(= RE,/iiy) denotes the normal com-
ponent of the electric field. pg(= pEpR?/eig) is the charge
density. mnyy is the unit normal vector of the drop surface.
Two dimensionless numbers are defined; electrical Bond num-
ber as Ne(= €ii3/26R) and gravitational Bond number as G(=
gR?Ap /6, Ap:the difference of density between droplet and air,
G:surface tension). A drop is so small that the gravitational Bond
number is negligible (G = 0). Reference pressure K is set by con-
straining the drop volume to be a fixed amount V.

V=W 4)

To search for the turning points (TP) where the system changes
from stable region to unstable region by linear stability analysis,
another relation is defined which specifies an adaptive choice of
parameter P[14].

P=PRy+AP 5)

The above equations are solved subject to following boundary
conditions,

fo=df/dO =0 at =0
f=1 at0=n/2 (6)

u=1 on Spy and SyozzLE

u=0 on Sgorrom @)
n-Vu=0 on SSYMa SASY and STOP

where f is the distance between drop surface and the origin of co-
ordinate, z.. The boundary condition related to corona discharge
is as follows,

E,<Ep on Sy (3)

where Ej is the critical electric field on the drop surface where
corona discharge occures. It is supposed that the electric field
is independent to the applied voltage, kept constant to Eo(Ep =
14.55 x 10V /m[13]) above the critical applied voltage where
corona discharges.

Numerical analysis

The domain is tessellated into a set of quadrilateral ele-
ments, as shown in Fig.2. In the domain V; the elements are
bordered by the fixed spines in r-direction and by the curves in
0-direction, which move proportionally to the free surface along
the spines [15]. Because the domain is axisymmetric, only the
domain of positive x-direction is calculated.

Fig.3 is the flow chart of this numerical method. At first
the calculation starts at low voltage (i.e. Ne = 0) below the criti-
cal voltage where corona discharges. Uniform and small value is
assumed for the initial condition of charge densty (pg = 10710).
Next, eq.(1),eq.(2),eq.(4) and eq.(5) are coupled and electric po-
tential, u; and others are solved by the Galerkin Finite Element
Method (GFEM) with the boundary conditions, eq.(6)-eq.(8).
When the electric field at some nodes on the droplet surface sur-
pass the critical electric field, the electric field at the very node
is forced (eq.(8)) to be Ey. Also, the other electric potential, u;
is independently solved by GFEM with eq.(3) and the boundary
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Figure 2.
mapped local domain.

condition eq.(8). From these two potentials, the stregths of elec-
tic field are calculated separately. The above calculations are re-
peated until criteria of convergence are satisfied with following
correction of charge density in each calculation step.

(k+1) — 5(0) (1 2K8E27E1> 9
p p ( + Ey+E )

where £ is the times of iteration and K, is a constant (K, = 1.1). If
the calculation is converged and it is not reached to predetermined
number of calculation cycle, parameter P is increased by the step
size AP to obtain turning point (TP) by linear stability analysis.
The method of choosing the parameter P is described below.

The eq.(1) and eq.(2) are coupled and solved by the Galerkin
Finite Element Method (GFEM) simultaneously. Mutiplying
eq.(1) and eq.(2) by weighting functions which are identical to the
bi-quadratic basis functions and integrating them by parts, weak
forms of the eq.(1) and eq.(2) are obtained as follows,

R{L = /s‘ [VS . ((])SnLV —(K+Gy +N€E,%)(])Se,- -nry | dSty
Sty

—cos (-)Cf (¢ strsy X ng-e;)dLrgy at s=1,---,S  (10)
Lisy

& = [ [vo'-Vu- o'or]aviy (11
f/n-V(p"dSLv:O ati=1,---,1
S

where S and / denote numbers of nodes. Electric potential and
drop shape are isoparametrically mapped onto the calculation
domain[16] and expressed by the bi-quadratic basis functions as
follows.

S
1(0)=Y B¢*(&,n=0) (12)
s=1
I .
u(6,r) oru(z,x) =Y o' (&,n) (13)
i=1
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Figure 3. Flowchart of numerical method

P=P+AP ‘

I

So far, N = S+ I residuals and unknowns (S, &) are defined. The
volume constraint eq.(4) is rewritten as the N 4 1% residual.

Ry =R C=vV—-Vp=0 (14)

Ryy2=P—Py—AP=0 (15)

where P is the value of the parameter at a known solution ®* on
a family of solutions and the parameter step size AP is a specified
increment to a new solution of R(®@) on the same family. The
paramter P is chosen from among @ so that maximizes ‘3—3‘,’) is
maximized, i.e. P is the variable among the nodal values of free
surface location and electrostatic potential, reference pressure and
electrical Bond number whose value is changing most rapidly dur-
ing continuation along solution family(Abott[14]). At the start of
calculation the electric Bond number Ne is chosen as the parame-
ter P. Finally the N + 2 residuals and unknown vector are defined
respectively as R(®) = (RVC,Ry42,R"E,RY), = (K,Ne, B, at).
The nonlinear sets of N + 2 algebraic equations R(®@) = 0 are
solved simultaneously by Newton’s method. With initial guess,

@, k+ 1% (k=1,2,---) solution can be solved as follows.

m@ub+M§=m%%wa%%) (16)
LoW)(@* ) — o) = —R(0®) (17)

where [/ is a Jacobian matrix. By applying boundary conditions

eq.(8), eq.(17) is solved iteratively until the L2-norm of residuals
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Figure 5. Drop shapes at the turnig points. D = —0.5, gap = 20.

R(w) were less than a prescribed tolerance. As quality of initial
guess is critical for Newton method, follwoings were used as ini-
tial conditions because the equilibrium drop shapes are segments
of spheres when gravitational and electrical forces are negligibly
small compared to surface tension forces.

79(68) = Dcos 6 +

u,r) (18)
{ 0 everywhere in V| and V
k0 —

1+D? — (Dsin0)?2

except on Syy and SyozzLE
1 on Sty and Syozzie

2
Ne® =0

Results

Fig.4 is the plot of the turning points in the case of the drop
shape parameter D = 0 and D = —0.5 with or without the effect
of corona discharge. It was already demonstrated that the turn-
ing points at D = 0 could estimate the jetting mode change from
dripping mode to cone-jet mode[12]. As shown in Fig.4, in the
case of D = 0, the effect of corona discharge is negligible, how-
ever, in the case of D = —0.5 and gap= 20, Fig.4 indicates that the
corona discharge reduces the applied potential at the turning point
as compared with the w/o-corona scheme. As is shown in Fig.5,
the droplet in with-corona scheme become unstable although it
deforms less than that in w/o-corona scheme. It can be estimated
that the corona discharge reduces the applied potential to be unsta-
ble so that the region of stable region should be decreased. Further
studies are indispensible for better understaing the corona effect
in electrostatic inkjet phenomena.
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Concluding remarks

Stability of a drop hanging from a nozzle in an electric field
with corona discharge was examined theoretically. It was found
that,

1. the static model with linear stability analysis was demon-
strated to be applicable to estimate the range of stable jet-
ting.

2. it seems that corona discharge enhances the instability of
droplet so that the stable jetting region is reduced.

Although the foregoing results are equilibrium profiles provided
that the drop volume is constant, they can suggest the way to
achieve stable electrostatic inkjet process by introducing proper
physical model such as corona discharge. Also they can be the
guidance to the studies of dynamic phenomena.
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