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Abstract 

The Xerox CiPress High Speed Waterless Ink Jet System uses 
many Solid Ink inkjet technologies from existing office products. 
One significant difference between the office Solid Ink products 
and CiPress is the printing architecture. The office ColorQube 
family of products first builds an image on a drum in multiple 
passes and transfers that image to paper when complete. The 
CiPress production system prints directly to paper and the ink is 
subsequently spread mechanically using high pressure. This 
process requires careful control of the paper temperature to 
achieve the best image quality.   

Introduction  
Xerox announced the CiPress 500 high speed waterless ink jet 

system for continuous web printing in 2011 [1]. More recently 
Xerox announced the CiPress 325 enabling even higher image 
quality for lower volume printing customers [2].  The CiPress 500 
and CiPress 325 use the same printing process but at different 
speeds, 500 and 325 feet per minute (fpm), respectively. See figure 
1 for a layout of the CiPress architecture. The CiPress system uses 
waterless solid ink inkjet technologies from the office ColorQube 
products [3] including modular printheads, phase change ink, and 
an image sensor for registration and missing jets compensation. 
The major difference between the CiPress architecture and the 
ColorQube architecture is how the ink is delivered to the paper and 
mechanically spread. The CiPress uses a jet direct to paper process 

followed by a cooling roll and ceramic heater to control the ink 
temperature prior to mechanical spreading. The ColorQube uses 
the offset process where the ink is jetted onto an intermediate 
metal drum before simultaneously transferring and mechanically 
spreading the ink on the paper. In this process the metal drum 
determines the ink temperature before transferring and spreading. 
This paper describes the process physics of leveling or equalizing 
the ink temperatures to a target value independent of local area 
coverage for both printing architectures.  

The modular printheads and image sensor have been 
previously discussed [4] and will not be addressed here. Here, we 
focus on the properties of the phase change ink and the interaction 
with the printing process for both architectures considered.  

The direct to paper and offset process use a similar resin-
based ink that is solid at room temperature and liquid in the heads 
for jetting [5]. Because the ink undergoes a temperature phase 
change when the drops are jetted to the relatively colder paper they 
immediately increase in viscosity and remain on the top of the 
paper rather than being absorbed by the paper fibers.  Therefore the 
printer is well suited to printing on inexpensive uncoated papers 
without any pretreatment prior to printing.  Because there is no 
water or solvent in the ink, there is no need for any drying after 
printing. 

Another phase change ink advantage over aqueous based inks 
is the ability to recycle the paper after printing. Aqueous inks are 
often difficult to remove from the paper during the recycling

 
Figure 1 – Schematic of Waterless Inkjet Process for High Speed Printing
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process and require a change in the deinking chemistry from the 
standard deinking process [6].  Because solid ink sits primarily on 
the surface of the paper as toner does, recycled prints may be 
deinked using the standard techniques used in the deinking 
industry [7]. 

Figure 2 shows the typical logarithm of viscosity versus 
temperature for a phase change ink. The ink viscosity spans several 
decades between jetting and room temperatures. The spreading 
process occurs in a middle soft state for the ink. If the ink is too 
cold prior to the application of pressure in the spreading process, 
then poor ink spread results in poor image quality. If the ink is too 
hot when pressure is applied, then the ink is pushed into the paper 
causing show through. For these reasons it is desirable to control 
the ink temperature within a narrow range prior to the spreading 
process in both architectures. 

Direct to Paper Printing Process 
A diagram of the CiPress printing process is shown in figure 

1.  The paper web enters the printer where the web guider aligns 
the web to the internal components within the engine. Because the 
solid ink adheres well to uncoated paper, there is no need for any 
paper preconditioning such as the application of a binding layer.  
Neither is there a need for any specially pretreated papers.  The 
paper then passes by a web cleaner which removes loose debris 
from the web prior to the jetting zone. 

After passing the web cleaner the web enters the pre-heater 
roll where the paper is heated to 45C before it enters the jetting 
zone. The heated paper passes along a series of print box units 
which contain print heads that eject ink horizontally on one side of 
the paper.  The paper temperarture is maintained throughout the 
jetting zone to 45C except where ink was placed. The temperature 
where ink was jetted to the paper depends on how much ink was 
laid down. For example secondaries (2 layers of ink) are much 
warmer than sparse halftones.   

 After leaving the jetting zone, the paper and ink touch the 
cooling roll where most of the excess heat due to the ink is 
extracted. Next the paper and ink pass by the intelligent scan bar 
that captures images printed on the web at a resolution of 600 spi 
in the cross process direction and at a resolution in the process 
direction that depends on the speed of the web.  The high speed 
sensor has sufficient resolution in the process direction to sense 
any misalignment of the print heads with an accuracy of less than 
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Figure 2 – Ink Viscosity versus Ink Temperature 

10 microns. The paper then passes by a ceramic heater that finally 
brings the ink and paper temperature to the target mechanical 
spreading temperature of 55C.  

Following the ceramic heater, the web passes through a 
spreader.  The two rolls of the spreader are under high pressure to 
give good adhesion of the ink to the paper and enable good image 
qualtiy through the spreading of the solid ink, without penetrating 
the paper and causing showthrough. The spreader drum is held at a 
temperature of 53C  

After the spreader the web can then either exit the machine 
for further processing, or be flipped and printed with a second 
engine for duplex. Narrow webs can be guided through the duplex 
return path for complete duplex printing within a single engine. 

Offset Printing Process 
The process of printing an image in an offset process on paper 

breaks down to three basic steps [8,9]: 
1. A drum maintenance unit cleans the drum surface of any 

residual ink from a previous print and applies an 
extremely thin layer of release agent to the clean metal 
print drum surface.  

2. The heated printhead sprays drops of molten ink onto the 
rotating image drum very precisely. The print drum is 
maintained at an intermediate temperature (55 °C). The 
ink droplets striking the oiled image drum change almost 
instantly from a molten liquid to a malleable semisolid. 
A high resolution full-color image is built on the image 
dum in multiple passes with the drum maintenance unit 
cammed out. 

3. The paper to be printed passes through a preheater into a 
pressure nip formed by a pressure roller and the image 
drum. Under heat and pressure the image transfers from 
the drum onto the paper in a single pass. By the time the 
paper exits the printer the ink has fully set and the print 
is immediately ready for use or can be immediately 
duplexed. 
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Figure 3 – Offset Print Process
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Fig. 4: Cooling and solidification of 250% AC ink jetted onto metal drum (left) and paper (right).  Initial drum/paper temperature is 45 deg C and ink temperature is 
115 deg C. Ink collapses to the drum temperature for metal drum, while paper temperature increases as ink cools and solidifies.    

 

Ink Temperatures 
Figure 4 shows the primary difference in ink temperature 

versus time after jetting for the two print processes considered 
here. These simulation results are based on a model of transient 
heat conduction in the ink and substrate including the 
thermodynamics of solidification.  The offset process which uses a 
metal drum quickly brings the ink temperature to the drum 
temperature as shown on the left side of figure 4 within 20ms. The 
direct to paper process is much more limited in its ability to quench 
the ink temperature in both time and final temperature.  Almost 
100ms is needed for the ink and temperature to reach their final 
temperature which can be much higher than the initial paper 
temperature.  It is this reduced ability to remove heat from the ink 
by the paper and environment that makes the high speed direct to 
paper process more challenging than the offset process. 
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Figure 5 – Thermal image of paper with ink after jetting zone. 

 

Figure 5 shows an additional complicating factor due to local 
area coverage’s within a print. The ink temperature after jetted on 
paper depends on how much ink was put down. Therefore 
secondary’s or two layers of ink are warmer than primary colors. 
Figure 5 shows the ink temperature dependence on area coverage, 
with ink temperature varying from the paper temperature for sparse 
halftones to a maximum temperature for a blue secondary color.  

Therefore, the high speed print process needs to level the ink 
temperature independent of area coverage and remove enough heat 
to bring the ink temperature to the target temperature prior to 
spreading.  

The maximum amount of heat that needs to be removed can 
be understood by knowing the maximum ink area coverage which 
is typically governed by secondaries or two layers of ink. The 
latent heat of solidification dominates the thermal equation for heat 
removal. For example, if only room temperature air cooling was 
used, the distance needed between the jetting zone and the spreader 
would be about 500 feet. To enable the high speed printing with 
only a few feet between the jetting zone and spreader, an efficient 
heat removal mechanism is needed.  
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Fig. 6: Effect of cooling roll (leveler) and ink coverage on paper temperature at 
500 fpm 
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Fig. 7 Effect of ceramic heater on web temperature,Solid line 500fpm, Dashed 
line 325fpm 

Heat Removal and Thermal Leveling of Ink 
Temperatures 

The cooler roll works in conjunction with the ceramic heater 
to remove heat and collapse the temperature delta between the ink 
and paper as well as bring the paper and ink temperature to the 
target spread value. 

The requirement to remove heat from the ink quickly is 
managed by the cooling roll where the warm ink comes into direct 
contact with the metal roller. The cooler roll runs about 35C and is 
the primary mechanism for removing the heat from the ink.  Figure 
6 shows the difference of the ink and paper temperatures with and 
without the cooler roll. Note how the temperature delta between 
paper and ink is greatly reduced but not completely collapsed and 
the paper temperature is well below the target temperature of 55C. 

To complete the paper and ink temperature collapse and bring 
both paper and ink temperatures to the desired target, the ceramic  
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Figure 8 – Thermal image of paper with ink prior to spreader. 

heater applies uniform heat. Figure 7 shows how this process of 
applying a uniform heat flux to the paper and ink results in 
different increases in temperature for paper and ink depending on 
the area coverage. The blank paper increases the most since it has 
lower heat capacity than regions with ink. Therefore, the more ink 
on the paper, the less of a temperature increase from the ceramic 
heater. This completes the thermal leveling of paper and ink 
temperatures while adjusting the temperature to the target prior to 
spreading. 

Figure 8 shows a thermal image of the final ink and paper 
temperature prior to entering the pressure zone in the spreader. 
Note how the ink and paper temperatures are now within a few 
degrees and largely independent of area coverage. This enables 
controlled ink spread without show through.  

To enable multiple process speeds for the direct to paper we 
note that the maximum amount of ink depends on the process 
speed. Therefore as the system slows down for higher image 
quality and a larger gamut, both the cooling roll and ceramic heater 
dwell times increase inversely to the process speed difference. This 
leads naturally to a flexible print process enabling the tradeoff 
between speed and image quality as shown in figure 7 comparing 
the solid line data for 500 fpm to the dashed line data for the 325 
fpm. 

Conclusions 
In conclusion, both the offset and high speed direct to paper 

architecture enable the phase change ink printing process. The key 
to this printing process is leveling and controlling the ink 
temperature prior to mechanical spreading. This occurs naturally 
for the offset printing process using a heated metal drum while in 
the high speed direct to paper process this is accomplished through 
the functions of the cooling roll and ceramic heater.  
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