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Abstract 
The protective layer for a thick--film thermal printhead is 

formed usually by the conventional screen-printing method. The 
curvature of the protection layer is dependent on the formation of 
the heater nib. If the cross-sectional structure of a heater nib is 
thin or wide, the curvature of the protection layer is large. Though 
the platen pressure becomes small, the printing characteristics is 
uneven due to larger contact area. On the other hand, if the cross-
sectional structure of a heater nib is thick or narrow, the curvature 
of the protection layer is small. The contact pressure with media is 
large and may generate sticking, and intense wear result. A new 
approach of protective layer formation by means of a direct 
dispensing system to realize a convex cross-sectional structure 
with a desirable curvature is studied.  It possesses the following 
advantages over the conventional screen-printing method: (1) 
Forms of various curvatures can be studied, independent of the 
form of a heater nib structure. This is critical in manufacturing a 
high-resolution printhead where the heater nib is usually very thin, 
and high reliability and long life expectancy are desirable. (2) 
Reduction in manufacturing cost since screen masks are not 
required and the waste paste used in screen-printing is saved.  

Introduction 
The thermal printing technology is based on the principle of 

transferring heat from a high-resistance nib line to the thermal-
sensitive media being contacted, and has the advantages of fast 
throughput and ease of maintenance.  There are two technologies 
in manufacturing thermal printheads: thin film by vacuum 
technology and thick film by screen-printing and firing process.  
Utilizing  thick film technology, the dual-line wide-format 
1200dpi thick film thermal head has been developed[1].  Several 
wide-format (up to 54" width) products based on the 1200-dpi thermal 
print head have been designed and are capable of printing half-tone 
images.   

Since the cross-sectional structure of a thick film thermal 
head is of curvature, contact with media is firm to provide 
sufficient printing efficiency. However, it does depend on the 
characteristics, such as viscosity, surface tension, etc., of paste 
material used for the nib line as well as the protection layer.  In the 
case of requiring a high heat response, the heater nib line should be 
thin, thus the curvature becomes large, resulting in an undesirable 
contact characteristics with media. Also, the variation in resistance 
of a nib line becomes large.  To improve contact characteristics 
with media, it is necessary to make the curvature small.  However, 
when the contact pressure becomes too high, media sticking would 
occur and wear of the protection layer becomes large.  On the other 
hand, in the case of large curvature, contact with media may 
become unstable.  In order to investigate these problems, formation 
of the protective layer by means of a direct dispensing system is 
studied and experiments are performed to obtain insight in the 
influence of different forms (curvature). 

 

Study of Protective Layer Structure 
The top view of the heater nib line on a typical thick film 

thermal head and the cross-sectional view of the structure are 
shown in Fig. 1.  

 
                                                                              Protective layer  

 
 
 
 
 
 
 
 
 

 
Figure 1 Top view of the heater nib line on a thick film thermal head and 

the cross-sectional view of the structure. 

A conductive pattern made of gold is formed by means of 
photolithograph and etching technology on the glazed ceramic 
substrate. Then the heater nib line is formed utilizing a direct 
dispensing system, and the protective layer is formed by screen-
printing[1].  The cross-section curvature of the protective layer on 
the heater nib line is influenced by the form of the heater nib line. 
This curvature can be approximated with a second-order curve 
with a hill-foot spread-out which is the characteristics of screen-
printing.  The curvature of the protection layer depends on the 
width as well as the height of the heater nib line.  The profiles of 
the protection layer on the heater nib line and the approximation of 
the second-order curves are shown in Figures 2 for 600dpi and 
400dpi nib lines. 

 
Figure 2  Cross-sectional profiles of the protection layer on the heater nib line   

The sketch diagram of a thermal printing system, that the 
feeding mechanism uses a platen roller, is shown in Figure 3.  
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The pressure applied to the protection layer atop the nib line 
may be estimated by the force and the contacting area which is a 
function of the elasticity characteristics[3][4] of the material as 
follows:  
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1
:  Poisson ratio of platen rubber  

2: Poisson ratio of protective layer  
E

1
:  Young's modulus of platen rubber 

E
2
: Young's modulus of protective layer 

R
1
:  Radius of the platen roller  

R
2
:  Curvature of the protection layer  

      Note that R
2
= 1/2a for a second-order curve y= ax2 

 
 

 

 

 

 

 

Figure 3    The diagram of the mechanism of a thermal printing system 

Shown in Fig. 4 is the calculated P
0
 as a function of R

2
 which 

is the curvature of the protection layer and is approximated as 1/2a.  
The pressure curve is normalized to 100% for the profile of a 
600dpi printhead. 

 

Figure 4  Changes of pressure due to variations of the curvature of contact 
area, with a=0.0015 for 600dpi and a=0.0008 for 400dpi 

Due to a smaller curvature (i.e., smaller R
2
, larger ‘a’ value), 

P
0
 for the case of 600dpi is about 1.37 times of P0 for 400dpi, and 

is about twice of P
0
 for 200dpi. 

The problem and a solution 
For the structure of the current thick film thermal head the 

pressure at the contact area between the protection layer and the 
media is a function of the curvature which differs with resolution 
of the nib line. Therefore, the following problems arise: 

1) Wear of the protection layer 
A higher pressure results for a nib line of higher resolution, 
hence wear of the protection layer becomes larger. 

2) Foreign objects and contaminations 
When foreign objects or contaminations are involved in, a heater 
element will break more easily under a higher pressure. 

3) The printing mechanism needs to be changed to adapt to the 
protective layer profile (curvature) on a heater nib of different 
resolution.  

 
To solve the above-mentioned problem, a new structure of 

protection layer is proposed as shown in Figure 5.  The protection 
layer is formed by means of a direct drawing system so that the 
contact portion may be of a desirable curvature. The optimal 
condition of the characteristics of the material of the protective 
glass paste and the dispensing parameters are studied in this 
development. 

 
 
 
 
 
 
 

 
Figure 5  Cross sectional structure of the proposed protective layer 

Present data analysis, and experiments 
Test samples are made by maintaining the same height (t) and 

only varying the width of the protection layer so that the curvature 
is changed. With P

0
 of the existing 600dpi printhead as a reference 

for 100% nominal pressure (Fig. 4), effort is made to generate the 
desirable curvatures for 75% and 50% on 400dpi nib lines.  The 
target height ranges between 14 and 16 μm, and the target widths 
are 1) 400 μm for 75％ pressure, and 2) 650 μm for 50％ pressure. 
The following experiments estimate: 
(1) Measurement of dimensions 
(2) Wear characteristics 
(3) Printing characteristics 

(3-1) Optical density versus applied energy 
(3-2) Variation of optical density along the moving direction 

Experimental result 
(1) Measurement of dimensions 

The result of the width and the height of trial heads are shown 
in Table 1. The top views of two trial thermal heads are shown in 
Fig. 6. The profiles and the approximation second-order curves are 
shown in Fig. 7. 

The estimated pressures P
0
 are shown in Figure 4. 

- Narrow width (W=390 μm)  “a” constant=0.0005  
        Pressure ratio; 58%  
- Wide width (W=670 μm)  “a’ constant=0.00015 
        Pressure ratio; 32% 
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Table 1   Form of a protection layer 
Test 

sample 
Width, W (μm) Thickness 

t (μm) 
const ‘a’  

Target Actual 
Narrow 400 390 17 0.0005 
Wide 650 670 18 0.00015 

 

 

 

 
 Narrow width (W=390)   Wide width (W=670) 

Figure 6  Top view of  the protection layer formation 

Figure 7  Cross-sectional profiles and approximation second-order curves 

 (2) Wear characteristics  
The lapping sheet of #3000 is twisted around the platen roller 

in Fig. 3, and the running test is performed under the following 
condition: 

Platen diameter: 40mm 
Force applied on platen: 4Kg  
TPH length: 60mm  
Feed speed: 25mm/sec  
No applied energy on TPH 
Measuring samples: 400dpi, W=390 and W=670 
 
The result of wear-out versus running length is shown in Fig. 

8. The photographs after 100m run of the current 400dpi thermal 
head and the wide OG (W=670) thermal head are shown in Fig. 9 
with the photographs of initial state of the surface for each case 
also shown. Both profiles are shown in Fig. 10. 

The amounts of wear of the current 400dpi thermal head and 
of Narrow OG (W=390) are almost the same as seen in Figure 8. In 
the case of W= 670, due to a gently-sloping curvature (a much 
smaller "a" constant of 0.00015), the wearing is at a slower rate 
than the current 400dpi or narrow OG (w=390).  

 
 

 

 

Figure 8  Result of wear characteristics test 

 

 

 
 

 
 (a) Initial state (0m)    (b) After 100m 

Current 400dpi thermal head 
 

 

 

 

 

 
 (c) Initial state (0m)     (d) After 100m 

Wide (W=670) partial OG type 
 

Figure 9  The surface states of thermal head in wear-out tests 

Figure 10  The profiles before and after 100m running test 

 
 

390  670 

0

5

10

15

20

-350 -250 -150 -50 50 150 250 350

Feed Direction [μm]

He
ig

ht
 [μ

m
]

a=0.00015 (W=670)

a=0.0005 (W=390)

y

x

0

5

10

15

20

-350 -250 -150 -50 50 150 250 350

Feed Direction [μm]

He
ig

ht
 [μ

m
]

Wear

Wear

400dpi TPH

Wide OG (W=670)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
0 20 40 60 80 100 120

Running Length [m]

W
ea

r [
μm

]

400dpi

W=390

W=670

90 ©2012 Society for Imaging Science and Technology



 

 

(3) Printing characteristics 
The spec of the thermal heads used for testing are as follows: 
- Printing width: 360mm. 
- Resolution: 600dpi, 
- Partial protective layer width: 

1) W=390 μm 
2) W=670 μm 
note:  SiN of 2 μm thickness is used  for protecting 
conductor. 

- Printing equipment: TechStyler (OYO Instruments) 
- Printing media: GSP film (OYO Instruments) 
 
The tests are performed by varying applied energy levels, and 

transmission optical density is measured by a Macbeth TD904.  
The result is shown in figure 11. The energy required to obtain 
saturation optical density is as follows. 

Current 600dpi thermal head: 0.175mJ 
Narrow OG (W=390):   0.172 mJ 
Wide OG (W=670):   0.192 mJ 
 

The standup ( -Gamma) characteristics of printing optical density: 
Narrow OG (W=390) is steep. 
Wide OG (W=970) is gently-sloping 
 
Note that about 10% more energy is required for the wide OG 

(W=670) type to achieve the same optical density. This is due to 
the influence of the thickness and the volume of a protective layer 
enclosing the heater nib. 

The averaged optical density along the moving direction is 
measured at intervals of 10mm on the applied energy conditions at 
optical density 3.4 and is shown in Fig. 12. 

 
Variations in the optical density:  
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Narrow OG (W=390): 2.4％ 
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Figure 11 The characteristics of optical density versus printing energy 

The variation of the narrow OG (W=390) type is the smallest 
although the curvature of the protection layer is the largest. This is 
because the protection layer is formed by means of a direct 
dispensing system and it’s easier to make a uniform form for a 
larger curvature, resulting in a smaller variation. 
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Figure 12  Measured optical density along the moving direction 

Summary and future direction 
 Formation of the protection layer of a thick film thermal head 
is made by means of a direct dispensing system.  Since it is the 
same equipment used for forming a heater nib line, there is no 
additional cost involved and it can form a protection layer of high 
precision on a heater nib line. The protection layer has a form of 
curvature which can be approximated with a second-order curve. 
Experiments have been performed on different types of protection 
layer of the same height but with different widths.  In the case of 
wide OG (W=670 μm), both the amounts of wear and the wearing 
rate are smaller the current 400dpi or narrow OG (w=390 μm) nib 
line.  However, it requires 10% more energy to achieve the same 
optical density. The variation in printing optical density is about 
the same as a current type.  In the case of narrow OG (W=390), it 
exhibits almost the same wear characteristics as a current thermal 
head, so is the printing characteristics. The variation in optical 
density is small compared with a current one.  When the protection 
layer of a thick film thermal head is formed by means of a direct 
dispensing system, it consumes about 1/10 or less protection layer 
material as compared with the current forming approach of screen-
printing.  Besides, the screen-printing mask is not required.  
Therefore, it also brings in the benefit of cost reduction  
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