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Abstract 

The surface states model is successful in predicting many 
salient features of charge transfer in insulative materials, which is 
critical to electrophotography. This paper will discuss how the 
surface chemistry controls the physics, the chemical potentials, 
and how it fits the surface states model. The interrelationship of 
acid-base Ka/Kb values of the materials in contact, measured by 
IGC (inverse gas chromatography), the HOMO (highest occupied 
molecular orbitals) and LUMO (lowest unoccupied molecular 
orbitals) and their excited states calculated using DFT (density 
functional theory) quantum mechanical modeling, the chemical 
potentials measured by the Kelvin method, and triboelectric 
charging data are studied. It will be shown that a precursor 
complex of the contacting materials, prior to the charge transfer 
event, can be calculated by DFT to predict both qualitatively and 
quantitatively triboelectric charging. The work focuses on PTFE, 
Kynar and PMMA polymers, as well as silica, titania and alumina. 

Introduction 
 The surface states model1 has been successful in explaining 

the physics behind charge exchange in insulators, predicting 
accurately many of the salient features of charging. The weakness 
of the model is that it is silent on the nature of the surface states 
responsible for charge exchange, and even the nature of the charge 
species itself—ions or electrons. The bidirectional Lewis acid-base 
charge model2,3 was introduced to address this issue, to provide a 
chemical basis for the electron donors and acceptors in an 
electronic charge exchange mechanism for insulators. While this 
model fits within the surface states model, it suggests discrete 
donor and acceptor states, not the continuous inter-gap states 
postulated by the surface states model. More recently molecular 
modeling4 has been applied to study the electron transfer process 
between donor and acceptor states, though the model used a work 
function model to explain the observed charge transfer, and did not 
explicitly include the concept of bidirectional charge transfer.  

This paper provides an initial integration of the surface states 
model, the bidirectional acid-base model, and computer modeling 
of donor and acceptor states, and provides both a qualitative and 
quantitative link between all these disparate aspects. 

Experimental 
Perdew’s 91 generalized gradient approximation 

(PW91PW91) was employed as the density functional method for 
QM calculations, using a double numerical basis set with d-
polarization functions (DND).  

Charge direction was measured by mixing pairs of powders. 
Kynar or PMMA were coated onto a 35µm ferrite core and charge 
of metal oxide additives (Degussa A300, P25 and aluminum oxide 

C) or 3 µm PTFE was measured by blow-off. A large PTFE 
particle was also utilized as a “carrier” particle in a similar way, 
measuring charge by blow-off of the metal oxide particles. 

Results and Discussion 

Charge transfer complexes: density functional 
theory QM modeling  

In the surface states model1, the difference in chemical 
potential between insulator surfaces in contact drives the charge 
transfer, balanced against the surface chemical potential 
difference. When the two fields match, charge transfer stops. 
Previous work2,3 showed that the chemical potential difference 
arises from a bidirectional charge transfer, both from Lewis base 
donor sites on surface A to Lewis acid acceptor sites on surface B, 
and donor sites on surface B to acceptor sites on surface A. The 
net charge transfer is thus dependent on the difference in energy 
between these two different charge transfer processes.  

A missing link was to identify the actual donor and acceptor 
sites that are responsible for the charging process. Nikitina4 used 
ab initio DFT and time dependant DFT to study the charge transfer 
event between PTFE and metal oxides. Briefly, they calculated the 
lowest energy configuration of the PTFE-oxide charge transfer 
pair, along with the associated HOMO and LUMO energies and 
the work function, through to a non-equilibrium excited state, then 
used TDDFT to an equilibrated final state, where they calculated 
partial electron densities transferred in the complexes, which they 
then related to charge exchange and the triboelectric series, though 
there was no actual comparison to any specific charging data.  

In the current work we use density functional theory (DFT) 
quantum mechanical (QM) modeling to further developer this idea 
of the charge pair that developers on contact. The approach in this 
study is similar in some ways to Nikitina, but focuses on what we 
call the precursor charge transfer complex that develops when 
materials come into contact, the complex that enables the charge 
transfer event. We also explore some of the assumptions made in 
that study and attempt to fit the QM modeling within the 
framework of both the bidirectional acid-base charging model, and 
with triboelectric charge, both qualitatively and quantitatively. 

In the first step, HOMO and LUMO frontier molecular 
orbitals are calculated for isolated PMMA and oxide molecules, 
the example with silica is shown in Fig. 1. The HOMO would be 
expected be the donor of the electrons for transfer, while the 
LUMO would be expected to be the acceptor. Since we will show 
later that silica accepts charge from PMMA, then the HOMO on 
the carbonyl group in PMMA is expected to be the electron donor 
site and the LUMO on the hydroxyl group in silica is expected to 
be the acceptor site.   
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Figure 1. HOMO and LUMO  for isolated clusters: A) PMMA cluster HOMO B) 
PMMA cluster LUMO, C) silica cluster HOMO, D) silica cluster LUMO 

Charge transfer occurs with a collision of two surfaces which 
must provide sufficient energy to enable transfer.5 In general these 
collisions will be at random orientations and are energetic 
compared to conformational energies. Thus preferred orientations 
in collisions should only be those built into the surfaces, such as 
surface OH groups on metal oxides. There is no reason to assume 
the lowest energy conformation is the lowest energy for charge 
transfer, an assumption Nikitina4 apparently makes. Our DFT 
calculations show that two key orientations of the precursor charge 
complex, the complex that leads to the charge event, are important: 
those where the polymer dipole either points away from or toward 
the oxide. For both orientations, energy was minimized and the 
LUMO and HOMO calculated. Only the precursor complex that 
leads to charge transfer was studied, not charge transfer itself. 

The bidirectional charge model2 shows charge can transfer in 
either direction on contact, but was not explicitly studied by 
Nikitina.4 The dominant orientation for electron charge transfer, 
from PMMA to silica--known from experiment--is shown in Fig. 
2, and denoted as the forward direction. It corresponds to the 
carbonyl dipole pointing away from the silica. Charge transfer in 
the reverse direction has a larger energy gap, and thus is less 
favorable, although it still occurs and is important. The HOMO  
and LUMO MO’s for the PMMA-silica complex are shown in Fig. 
2. As with the isolated molecules, the HOMO is located on the 
PMMA, the LUMO on silica—so charge is donated from PMMA 
 

 
Figure 2. PMMA-silica complex with alkyl groups of PMMA facing silica 
hydroxyls showing forward charge transfer and HOMO and LUMO’s.  

to silica, resulting in the negative charge on silica. 
The relationship between the energy level diagram for the 

molecular orbitals in isolated molecules and the charge transfer 
complex are shown in Fig. 3. Note that the HOMO to LUMO 
energy gap is changed only slightly between isolated molecules 
and the complex, due to intermolecular orbital overlap. While it is 
not known if this small change in LUMO and HOMO energy 
levels is general, a self-consistent triboelectric series depends on 
this difference being small. If it were large then the position of a 
material in the series could change depending on the pairing of 
materials and no general tribo series could exist. On the other 
hand, specific pair-wise interactions could explain why sometimes 
material pairs do not behave as expected based on the triboelectric 
series in some cases. Though of course, such things as surface 
contamination and impurities and physical materials transfer can 
also alter results from the expected tribo series. 
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Figure 3. Energy level diagram for molecular orbitals, and relationship to 
Lewis acid-base parameters for: a) isolated PMMA and silica and b) PMMA-
silica charge transfer complex. Excited states are not show for the isolated 
case. 

As mentioned above, two different orientations have been 
found to be generally useful in understanding the charge transfer 
properties, one where the carbonyl group faces the oxide, and one 
where the carbonyl group faces away and the polymer alkyl 
groups face the oxide. The HOMO and LUMO of charge transfer 
complexes for different oxides with PMMA are shown in Fig. 4. 
Here we introduce the concept of Fukui functions, which are the 
key indicators for regioselectivity in electron-transfer dominated 
reactions. We use them to predict the electrophilic (f−) and 
nucleophilic (f+) maxima of PMMA, the molecular locations of 
electron donation and acceptance, respectively. The f+ orientation 
of PMMA thus has the nucleophilic side facing the silica (the 
methylene alkyl groups), while f− has the electrophilic side of the 
PMMA cluster, the carbonyl groups, facing the silica.  Fig. 4 
shows both orientations of PMMA with silica, alumina and titania.  
In all cases, the f+ orientation results in the lowest electron transfer 
gap from the PMMA to the oxide. For the f− orientation, the 
energy gap is slightly favored for transfer to silica, strongly 
favored for titania, while for alumina, electron transfer to PMMA 
is favored. Thus, the prediction in terms of energy gaps is that 
silica and titania will charge negative, as observed, while with 
alumina each charging direction is favored in one orientation. 
Thus, for alumina the two charging processes will tend to 
counterbalance, and provided the occurrence of these two 

NIP 28 and Digital Fabrication 2012 361



 

 

orientations in surface collisions is similar, we predict alumina will 
not charge well with respect to PMMA, as observed. 
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Orientation 

f + f - f + f - f + f - 

Charge Transfer       
To Oxide (eV) 4.61 5.38 2.67 2.89 3.74 4.68 

 
To PMMA (eV) 6.23 5.48 >4.16 >4.21 5.65 3.78 

 
Figure 4.  Active electron transfer sites and orientation dependence for silica, 
titania and alumina vs. PMMA. 

Linking QM Modeling to Acid-Base Parameters, 
Contact Potentials and Triboelectric Charging 

In the bidirectional charge model we must consider charge 
transfer in both directions to fully understand charge transfer, as 
all materials have both electron donation and acceptance 

capability, characterized by a base parameter, Kb, and by an acid 
parameter, Ka, respectively. For two surfaces A and B, the energy 
gap for charge transfer from A to B is proportional to log 
[Kb(A) Ka(B)], while the energy gap for electron transfer from B 
to A is proportional to log [Kb(B)/Ka(A)].2 Thus, the apparent 
work function difference, or contact potential difference (CPD), 
for insulators is described by Eq. (1), the average of the forward 
and reverse charge transfer processes between discrete acid and 
base sites on the two materials. Here C is a constant. 

 

CPD(A,B)  = C  log [Kb(A)/Ka(B)] – log [Kb(A)/Ka(B)]   (1) 
 
In previous work3,6 oxide contact potentials were correlated 

strongly to Ka/Kb values. From that correlation, and published Ka 
and Kb values, it is possible to predict the CPD values. Fig. 5 
shows CPD values referenced to polystyrene. There are few CPD 
measurements in the literature for polymers that have measured 
Ka/Kb values. Yanagida7 measured work functions at 40% RH by 
CPD and by UV photoelectron spectroscopy. CPD and Ka/Kb 
values from ref. 6, which were measured as a function of RH, were 
interpolated to 40% RH to compare to Yanagida. The correlation 
shown in Fig. 5 is reasonable, although data is limited. 
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Figure 5. Relationship of chemical potentials to surface acid-base parameters: 

calculated from Ka/Kb and CPD data6,  measured7 

Fig. 6 shows the predicted direction of charge exchange using 
DTF to calculate the precursor energy levels, as shown for 
example in Fig. 3 and 4, then comparing the energy gaps to 
determine the lower energy forward charge transfer direction. The 
DFT predictions were compared to that measured by mixing 
powders for tribo blow-off. Here we are qualitatively predicting 
the triboelectric series. The direction of charge exchange is 
predicted correctly for oxides charging with PMMA. Alumina and 
silica are predicted correctly for charging with Kynar, but titania is 
predicted to be negative, while no charge exchange was observed. 
However, titania is predicted to be to the negative side compared 
to alumina in the kynar series, the observed order. For charging 
with PTFE, alumina is predicted to be positive as observed, but 
silica is also predicted to be positive, while observed charge is 
negative. Interestingly, the Ka/Kb values predict silica to be 
positive, in agreement with the modeling, so here the observed 
charge seems odd. PTFE is a difficult material to measure 
experimentally, as it is very prone to material physical transfer8 
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due to its softness, so experimental measurements could be 
questionable. For titania, with 11 excited states no charge transfer 
was seen, though higher states might provide transfer 
opportunities. Accuracy suffers too much however to calculate 
these states. Overall there is some reasonable qualitative 
agreement between modeling and the observed triboelectric series, 
though more work is needed. 

 

A
lu

m
in

a

Ti
ta

ni
a

Si
lic

a

A
lu

m
in

a

Ti
ta

ni
a

Si
lic

a

A
lu

m
in

a

Ti
ta

ni
a

Si
lic

a

PMMA Kynar PTFE

O
xi

de
 C

ha
rg

e 
vs

. P
ol

ym
er

 

Tribo charge

Modeling 
Prediction

+

0

-

 
Figure 6. Prediction of direction of charge transfer from DFT modeling  and 
from triboelectric charging 

To build a quantitative model, Fig. 7 shows a linear 
correlation between the DFT calculated energy gaps, taking the 
energy gap difference for the polymer as the donor compared to 
the polymer as the acceptor in the complex, a plot of Eq. 1. So 
PMMA has a lower energy gap as the donor in the complex. Thus 
the silica has a negative contact potential difference compared to 
PMMA. Similarly PTFE has a higher energy gap when the donor, 
so CPD of the oxides is positive. The correlation also passes close 
to the origin as it should, although the the slope is not 1:1. 
Nonetheless a very encouraging start to developing a quantitative 
model. 
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Figure 7.  Energy gaps in precursor complex with the polymer as the donor or 
acceptor compared to CPD of silica, alumina, titania with PMMA and PTFE. 

Fig. 8 shows another test of the quantitative DFT model, here 
the individual energy gaps between the donor and acceptor are 
shown compared to log (Ka Kb). Since the charge model is 
bidirectional, the polymer can be either a donor or an acceptor. 
Again the correlation is reasonable, and does indeed show that the 

energy gaps between the donor and acceptor follow the expected 
trend, the larger Ka (the better the acceptor) and Kb (the better the 
donor) the smaller the energy gap. In Fig. 8, PTFE as a donor 
appears to be showing more variation. PTFE is an excellent 
acceptor, but a terrible donor, so it may be the difficulty is in 
predicting the very weak donation capacity. 
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Figure 8. Energy gaps in precursor complex to triboelectric charging of silica, 
alumina, titania vs. PMMA for forward and reverse gaps 

Conclusions 
An initial integration of the physics of electron transfer, the 

surface states model and DFT computer modeling, and the 
chemistry, the bidirectional acid-base model, is promising. DFT 
modeling of a precursor complex in the contact of the two 
charging surfaces, prior to the charge transfer event, provides both 
a qualitative and quantitative link between all these disparate 
aspects, for the polymers and metal oxides studied. The 
importance of different orientations of the polymer dipole in its 
approach to the metal oxide is also demonstrated. 
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