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Abstract 

Energy curable inkjet inks are susceptible to build up of 
cured material at the nozzle where ink is ejected, which leads to jet 
deviation and ultimately lost jets. This causes a reduction in image 
quality and the need to replace the printhead. Traditional 
stabilizers do not reduce the susceptibility of energy curable inkjet 
inks to stray light or if they do, cure is compromised. It has been 
discovered that nitroxyl stabilizers will significantly reduce the 
build up of cured ink caused by exposure to low levels of UV light 
from stray light sources without compromising cure speed. In this 
paper a new test method for assessing the stray light resistance of 
energy curable inkjet inks is detailed. The major types of 
stabilizers are described and their effect on stray light resistance 
and cure for UV curable inkjet inks is determined. 

Introduction  
  The ability of inkjet technology to deposit materials with 
different chemical and physical properties has made it an 
important technology. Inkjet finds applications in many graphics 
applications including point of purchase, vehicle wraps, wide 
format printing plus it has also been used in electronics including 
the manufacture of solar panels and PCBs. 
 A typical drop-on-demand(DoD) inkjet printhead consists of 
several ink channels in parallel. Each channel has a piezo-actuator, 
which on application of a standard actuation voltage pulse 
generates pressure oscillations inside the ink channel. These 
pressure oscillations then push the ink drop out of the nozzle. 
 The print quality delivered by an inkjet printhead depends on 
the properties of the jetted drop. The following drop properties are 
required to be precisely controlled to give acceptable image 
quality, reliability and printhead performance: 
 
Drop Velocity 
Drop Mass/Volume 
Drop Shape (ligaments and satellites) 
Jet Straightness 
  
  A potential problem with UV inkjet inks is susceptibility to 
‘stray light’ causing the build up of cured or partially cured ink 
around the nozzle. In the first instance this may result in a 
degradation of jet straightness, resulting in deviated jets and a 
degradation in image quality (see Figures 1, 2 and 3). Ultimately 
nozzles may become blocked by cured ink and the print head may 
require replacing. The term ‘stray light’ includes visible or 
ultraviolet radiation which could interact with thin (UV curable) 
ink films and cause curing reactions to take place.  
 
 
 

 
Figure 1: Normal operation of a printhead with no nozzle deviation.  

 
Figure 2: Operation of a printhead with nozzle deviation. Note the main drop 
has merged with the adjacent drop with a small satellite drop thrown to one 
side.  

 
Figure 3: Scanned image of a real printhead nozzle test pattern from a flat 
bed wide format graphics printer suffering from this effect of stray light.  

 The most obvious source of stray light in a scanning head UV 
inkjet printer would be the UV source itself, hence care must be 
taken to remove/ baffle any reflective surfaces that the lamp may 
travel over during a print stroke. The height and spacing of the 
curing system from the printhead cluster is also an important factor 
in controlling reflected light. Even with the optimization of the 
design of the cure unit the inks will still be subjected to some stray 
light. Another source of ‘stray light’ can be natural daylight which 
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contains light in the Ultraviolet A region 315-400nm, Ultraviolet B 
region 280-315nm and Ultraviolet C region 100-280nm. Artificial 
fluorescent light can over time be another source of ‘stray light’ as 
the emission spectrum contains light in the Ultraviolet B and C 
regions. 

Stabilizers 
Free radical initiated polymerization is a three step process: 

1) initiation; 2) propagation; and 3) termination. In inks and 
coatings based on acrylates, polymerization should ensue rapidly 
and completely only when it is required, i.e. when the printed 
substrate is exposed to UV light or EB radiation. The ink or 
coating should however remain liquid and free flowing before and 
while it is being applied to the substrate, and also remain 
unchanged from when it was first manufactured during shipping 
and long periods of storage. In reality the potential for 
polymerization exists at every step of the process, because some 
free radicals are formed from purification of acrylated monomers 
and oligomers by distillation, heating of oligomers to make them 
free flowing, shear and heat built up during milling to grind and 
distribute pigments, during storage prior to use, and while the ink 
remains on the inkjet printer. The ideal polymerization inhibitor 
can disable the initiation and propagation of unwanted free 
radicals without interfering with the rate or extent of cure when it 
is needed. It needs to be effective at low concentration in the 
absence or presence of oxygen to avoid issues in sealed bottles 
during storage and with degassing units on printheads, and is 
effective over the entire temperature range to which the ink and its 
ingredients will be exposed during manufacture, storage, and 
application. 

There are seven major types of stabilizers used in energy 
curable inkjet inks, these are described as follows: 

1. Phenolic Based 
Phenolic inhibitors are not effective in the absence of oxygen and 
can discolour the final coating. These inhibitors are chain breaking 
donors as they donate the proton on the phenolic hydroxyl group 
to stabilize energy curable inks.  Common examples are 
hydroquinone(HQ), methyletherhydroquinone(MEHQ) and 
butylhydroxytoluene(BHT). 

 

    
Figure 4: MEHQ                          Figure 5: BHT 

2. Phenothiazine 
 These inhibitors do not require oxygen as they work via an 
anaerobic mechanism. The mechanism for phenothiazine includes 
hydrogen atom donation with subsequent radical scavenging and 
hydroperoxide decomposition. Reaction products of phenothiazine 
(dimers, trimers, quinone-imines) also inhibit polymerization.  

 
Figure 6: Phenothiazine 

3. Nitrosophenylhydroxylamine (NPHA) based stabilizers  
 NPHA, amine salts, and metal salts (Al salt, N-PAL) are 
available commercially as neat solids and as dilute solutions in 
acrylate ester monomers (Albemarle, IDLCHEM, Rahn). N-PAL 
solutions typically contain 4 to 8% inhibitor in acrylate monomers 
of oligomers. 
 

 
Figure 7: NPHA based stabilizers 

 NPHA based inhibitors are effective in the absence of oxygen 
as they work by an anaerobic mechanism. Multiple radicals can be 
scavenged with the formation of alkoxyamine (NOR) compounds. 
 
4. Aromatic amine stabilizers 

 Typical aromatic amine stabilizers are diphenylamine(DPA) 
and phenylenediamine(PPD) The stabilization mechanisms of the 
aromatic amines involves both scavenging of free radicals and 
reaction with oxygen, followed by reactions of the oxygenated 
amines with free radicals.  

 

 
Figure 8: Diphenylamine 

5. Metal Deactivators  
 Preventive inhibitors, or secondary antioxidants, are classified 
as peroxide decomposers and metal deactivators or metal 
chelators.  Metal ions can catalyze the decomposition of peroxides 
which can lead to the formation of free radicals causing instability 
in the ink. Metal deactivators include ureas, oxamides, carbazides, 
and benzotriazole. 
 

 
Figure 9: Benzotriazole 

6. Alkoxylamine (NOR) HALS    stabilizers  
 Hindered Amine Light Stabilizers (HALS) are derivatives of 
2,2,6,6-tetramethyl piperidine . NOR derivatives tend to be 
more effective than NH or NR types as they enter the stabilization 
cycle quicker. 
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Figure 10: Alkoxy derivative of 2,2,6,6-tetramethyl piperidine  

7. Nitroxyl Stabilizers  
Nitroxyl stabilizers can be effective stabilizers for UV inkjet 

inks at low concentrations but the level they are used at needs to 
be carefully optimized or cure can be retarded. In some cases the 
cure can be retarded to such an extent that wrinkle is seen. Wrinkle 
is the phenomenon when sufficient initiating free radicals do not 
reach the base of the coating which leads to monomer migration 
through the cured film with eventual softening of the surface. This 
gives a soft cured surface with no water/solvent resistance with a 
matt wave type appearance. The inventors have discovered that by 
using the nitroxyl stabilizers in energy curable inkjet formulations 
excellent resistance to stray light can be obtained with no retarding 
of the cure profile.  

 

 
Figure 11: OHTEMPO 

Experimental 
 One material from each stabilizer family was tested in model 
ink formulations and tested for stray light resistance, along with 
water and solvent resistance as a measure of the degree of cure. 

Stray Light Resistance Index (SLRI)  
 1. An EXFO Omnicure Series 2000, aperture size 5%, flash 
length 0.2 seconds is set to deliver 2mj/cm2 dose of UV. 
 2. Draw down a 12µm layer of the ink onto a ISO 8037/1 
glass microscope slide using a RK K bar. 
 3. Place a 22mm x 22mm Menzel glass slide gently on top of 
the ink layer so the cover is completely wetted. 
 4. Immediately place the side perpendicular to the beam with 
the beam going through the centre of the Menzel glass slide. 
 5. Give one flash of UV light and continue to flash with UV 
light until it is not possible to move the Menzel glass slide. 
 6. The number of flash required so it is not possible to move 
the Menzel glass slide is equal to the Light Resistance Index. 
 
 
 

 
Figure 12: EXFO 2000  

Solvent/Water Resistance 
1. Draw down a 12µm layer of ink onto Leneta 2A card. 

 2. Cure using 150mj/cm2 dose of UV from either a Fusion UV 
curing or Nordson LED unit. 
 3. Saturate a cotton tipped applicator in either isopropyl 
alcohol or water. 
 4. Wipe the ink coating with the applicator from left to right 
and back to the starting position which counts as one rub. Maintain 
even pressure throughout. 
 5. Repeat until the card is visible through the coating. Record 
the number of rubs taken to reach this stage.  
 
Examples: 

Table 1: Inkjet formulations 
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Figure 13: Change in solvent resistance with stabilizer level  

 The phenolic based stabilizer, MEHQ, can be seen to have the 
least effect on cure as the level is increased. Phenothiazine does 
not effect the cure up to 0.5% but after that a marked reduction in 
cure is observed. IDL510 an NPHA based stabilizer gives the 
worst performance with a reduction in cure seen at addition levels 
of above 0.01%. A reduction in cure is seen with the 
alkyoxyamine HALS stabilizer (NOR) Tinuvin 123, 
diphenylamine, the dual acting metal deactivator/phenolic based 

Ink          
Composition A B C D E F G 

PONPGDA 52.5 52.5 52.5 51.4 51.3 52.0 51.5 
DiTMPTA 7.0 7.0 7.0 7.0 7.0 7.0 7.0 
TMPEOTA 13.5 13.5 13.5 13.5 13.5 13.5 13.5 
Rapicure 
DVE3 

12.0 12.0 12.0 12.0 12.0 12.0 12.0 

Esacure 
KIP100 

2.0 2.0 2.0 2.0 2.0 2.0 2.0 

Omnirad BP 5.0 5.0 5.0 5.0 5.0 5.0 5.0 
CN3715 7.0 7.0 7.0 7.0 7.0 7.0 7.0 
Tego A115 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Stabilizer 
Level 0 0.01 0.05 0.1 0.2 0.5 1.0 
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antioxidant Irganox MD1024 and OHTEMPO at levels of 0.1% 
and above. 
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Figure 14: Change in SLRI with stabilizer level  

 The only stabilizer to show good stray light resistance was 
OHTEMPO. 

Determination of the Optimum Level of Stabilizer
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Figure 15:  Determination of the optimum level of stabilizer 

 The optimum stabilizer level, giving good stray light 
resistance, can be seen to be between 0.01 and 0.05 for the ink 
formulation shown in table 1. 

Conclusion 
 Jet deviation and lost jets can be a significant problem with 
the formulation of energy curable inkjet inks. A new test method 
has been validated that can detect differences in stray light 
resistance for UV curable inkjet inks. This test method has been 
successfully used to determine the optimum type and level of 
stabilizer required to maintain cure and minimize issues relating to 
stray light. 
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