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Abstract 

Xerography is based on the development of latent 
electrostatic images by triboelectrically-charged toner particles. 
In a two-component (TCD) developer, the toner particles are 
triboelectrically charged via energetic mixing with polymer-coated 
magnetic carrier beads. Since the TCD xerographic development 
process is non-linearly related to TCD developer properties (e.g. 
toner charge, toner supply, powder flow mechanics, etc.), TCD 
aging can be a major factor for eventual imaging failure. In this 
review, simple parametric models of  triboelectric charging and 
xerographic development will be combined to illustrate some of 
the major effects of changes in carrier bead surface chemistry on 
insulative TCD xerographic development. 

Theory 

Two-component Triboelectrification 
For a well-mixed two-component xerographic developer, the 

toner q/m can be simply related to toner and carrier charge 
properties by the following parametric equation: 

q/m = (A'· (φtoner – φcarrier)) / (C + C0)                (1) 

where C is the toner concentration; C0 is an offset constant term 
that is a function of the diameter and density of both the toner 
particles and the carrier beads; A' is a function of carrier size and 
density [1,2]. 
For simple TCD carrier aging, the charging ability of the carrier 
beads will approach zero at long aging times (i.e., when φaged carrier 
= φtoner), and the product q/mt · (Ct + C0) = At can be used as a 
measure of carrier aging at intermediate  aging  times [3].   

Insulative TCD Development 
In this mode (the so-called insulative magnetic brush, IMB), a 

mixture of toner particles and carrier beads has a zero net-charge, 
with equal and opposite charges residing on the toner and carrier 
particles. During IMB development, charged toner particles are 
stripped from the carrier beads by the attractive forces of the latent 
electrostatic image, thereby leaving charged carrier beads in the 
post-development magnetic brush. As a result, the IMB mode is 
not efficient, since charged carrier beads effectively create an 
opposing electrical bias for continued development of toner 
particles, and can also scavenge developed image toner particles 
back into the magnetic brush [4-12].  To increase the toner supply 
available for development from an IMB developer, various 
strategies have been devised: (a) a tandem array of multiple 
development brushes [13], so that development involves a series of 
“fresh” zero-net-charge developers; (b) increased mechanical [14] 

or magnetic agitation [15] in the development zone, to facilitate 
toner migration; (c) application of an AC field to the development 
zone, to stimulate toner agitation [16]. 

For slow xerographic process conditions, the level of IMB 
development can approach an ultimate state where the 
development field between the photoreceptor and the magnetic 
development brush is totally balanced by the layer of  
triboelectrically-charged imaged toner particles. In such a case, for 
constant process conditions, solid area image development is 
simply related to the image potential Vi, and toner q/m by: 

dma = (κ · (Vi – Vbias)) /⏐q/m⏐          (2) 

where dma is the developed image mass (mg/cm2), κ is a 
process/materials-specific constant, and Vbias is a d.c. electrical 
bias applied to the development brush to minimize background 
(i.e., non-image) development. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1:  IMB xerographic development 

                      as a function of toner q/m and C. 
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However, for practical IMB development, dma is typically 

reduced from the maximum value predicted by Eqn. 2, as a result 
of toner supply limitations.   Additionally, dma may be affected 
by an in-situ bias as a result of triboelectrification between the 
photoreceptor surface and the development brush [11,12].  As a 
result, as shown in Figure 1, IMB development can be constrained 
by a non-linear dma response to  (Vimage-Vbias), coupled with a 
positive threshold development voltage. 
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To describe xerographic development curves of the type 
shown in Figure 1, it is convenient to expand Eqn. (2) by including 
a toner concentration-driven supply constant, δ , and an offset 
voltage, Voff  to create a modified parametric descriptor [17]: 

dma = δ· C· (1-exp{(-κ · (Vi – Vbias –Voff)) /(δ·⏐q/m⏐·C)})  (3) 

Conceptually, the offset voltage Voff will be a function of 
carrier/photoreceptor triboelectric charging at low toner 
concentrations, and toner/photoreceptor triboelectric charging at 
high toner concentrations, and Voff  can be simply related to carrier 
and toner contributions by: 

Voff  = Vcarrier · (1- θ ) + θ · Vtoner               (4) 
where θ is the surface concentration of toner particles on the 
carrier beads (i.e.  θ = γ·C), Vcarrier is the offset voltage generated 
by detoned carrier beads, and Vtoner is the offset voltage from a 
monolayer of toner particles on the carrier beads. 

For the case where carrier beads age via an accumulation of 
impacted toner Voff will be given by: 

Voff  = Vcarrier · ((1- θ )·(exp{-k· t}))  
+  Vtoner · (1-(exp{-k· t})· (1- θ ))          (5) 

where k is the triboelectric aging rate constant. 

Results 

Model  Prediction for a Simple IMB Developer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  2:  dma = 0.5mg/cm2 isodensity contours for 

two negative IMB developers. 
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The isodensity model for carrier C in Figure 2 illustrates the 

effect of triboelectric aging on solid-area image  development  for  

a  simple  negative  polarity  IMB developer, based on 130 μ 
coated ferrite carrier beads and 9 μ Sty/Ac toner particles, with 
δ  = 2.5,   κ = 0.09,   dma = 0.50 ± 2%,   A0 = -110,     C0 = 1.5,  k 
= 0.010, γ = 0.18, Vcarrier = 148 volts,   Vtoner = 268 volts, (Vimage – 
Vbias) = 588 ± 2%.  

The isodensity model  for carrier U in Figure 1 is for a simple 
negative polarity IMB developer, based on 130 μ uncoated  ferrite  
carrier  beads and 9 μ toner particles,   with  δ = 2.5,   κ = 0.09,    
dma = 0.50 ± 2%,    A0 = -70,    C0 = 1.5,   k = 0.005, γ  = 0.18,  
Vcarrier = 350 volts, Vtoner = 268 volts,     (Vimage – Vbias) = 588 ± 
2%. 

Model  Prediction for a “Small-Carrier” IMB 
Developer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Isodensity contour for an IMB TCD developer 
based on 35μ ferrite carrier and 6 μ   polyester toner. 
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The present trend towards the use of “small” toner particles in 

full-color xerographic printers has created a need for IMB TCD 
developers based on “small” carriers.  

Figure 3 shows a model isodensity prediction for a simple 
IMB TCD developer based on 35 μ coated ferrite carrier beads and 
6 μ polyester toner particles, with δ = 2.5, κ = 0.045, dma =0.50 ± 
2%,  A0 = 200, C0 = 4.1,    k = 0.0025, γ  = 0.067,  Vcarrier = 150 
volts, Vtoner = 200 volts, (Vimage – Vbias) = 588 ± 2%. 

 With respect to triboelectric charging, the change from a 
“large” 130μ ferrite-based carrier to a “small” 35μ ferrite-based 
carrier creates a reduced sensitivity of q/m to toner concentration.  

Xerographically, as shown in Figure 3, the model “small” 
ferrite-based  developer produces a constant level of image 
development at a constant q/m value, for all toner concentrations 
in the 3 to 7 wt% range. 

 

NIP 28 and Digital Fabrication 2012 357



 

Model  Prediction for a Positive CCA-based IMB 
 Developer 

While toner CCA’s are often used to impart a desired level of 
toner charge and polarity, CCA-based toners can also generate 
complex triboelectric aging profiles, and Figure 4 shows a model 
At aging track.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:  At  vs. aging time for a positive CCA polarity 
toner coupled with a coated steel carrier. 
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For  a model 9μ  positive CCA toner coupled with a 125μ 

acrylate-fluoropolymer-coated steel carrier, the triboelectric aging 
profile has an initial increase in At (preferential carrier coating 
loss; carrier contamination by specific toner components?), 
followed by a rapid decline (CCA contamination?), along with an 
underlying steady first-order degradation process (toner 
impaction?). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5:  Isodensity contour for a positive CCA toner 
with a steel IMB carrier.   S = Astart, P = Apeak,  E = Aend 
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To model this type of IMB TCD developer, the controlling 
triboelectric and xerographic factors were set as:   κ = 0.14,    dma 
=  0.50 ± 2%,   A0 = 70,   C0 = 1.0,     k = 0.01,  γ = 0.27,         At = 
40·exp{-0.1·t} + 70·exp{-0.01·t} – 40·exp{-0.5·t},           Vtoner = 60 
volts,  Vcarrier = -10 volts,   (Vimage – Vbias) = 200 volts, and 
development is assumed to follow a simple low-field relationship: 

dma = (κ · (Vi – Vbias - Voff)) / q/m      (6) 

The predicted isodensity contour as a function of carrier age 
is shown in Figure 5, where the initial control point is at S, the 
intermediate (increased At) is at point P, and the long-term aged 
point is at E.  This, then, is an extreme example of the effect of 
triboelectric aging on xerographic imaging performance. 

Summary and Conclusions 
The model isodensity contours shown in this report represent 

just some of the many effects that triboelectric aging can have on 
xerographic development. Besides the IMB development mode 
considered in the present study, TCD development can also be 
based on conductive development [11,12,18], on magnetically-
agitated development [15], on AC-stimulated development [16], 
and on powder-cloud development [19]. While these enhanced 
development technologies can create a higher level of xerographic 
development than that of IMB development, they all require 
complex developer materials designs, and are  thereby subject to 
triboelectric charging failure modes beyond those typical of simple 
IMB developer designs [20]. For example, a major decrease in q/m 
created by an increase in ambient relative humidity (reflecting RH-
driven changes in the φtoner and φcarrier values of toner particles and 
carrier beads based on complex materials designs) can create a 
significant increase in xerographic image and non-image 
development.  Similarly, toner “aging” (e.g., as generated by an 
extended development housing residence time during low-area 
printing) can produce an abrupt decrease in xerographic image 
development and a step-function increase in non-image 
development, following an increase in the rate at which toner is 
dispensed into the working developer. For both RH-driven and 
toner “aging” processes, the xerographic effect will be a random 
event independent of any long-term aging process, and will 
thereby be a complex problem for process control.  Similarly, for 
xerographic development technologies that are affected by several 
independent developer materials properties (e.g., toner q/m 
coupled with developer conductivity, toner cohesion, etc. 
[12,18,20]), multiple developer aging modes can create conflicting 
responses to process control and thereby produce irreversible 
failure modes. 

Using actuators such as toner concentration, photoreceptor 
charge level, applied electrical bias, laser or LED imaging 
intensity, adaptive xerographic process controls can counteract 
many triboelectrically-driven changes in xerographic development 
[21-24]. However, even with complex control algorithms, non-
linear imaging/actuator dependencies may introduce additional 
xerographic imaging failure modes. For example, a controlled 
decrease in toner concentration may provoke a bead-carryout  
failure, while a major controlled increase in toner concentration 
may adversely affect developer flow, increase non-image area 
development, and increase the level of free-flying toner “dirt”.  
Similarly, while changes in actuators such as toner concentration,  
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Vimage (via photoreceptor charging or imaging light intensity) and 
Vbias may all be manipulated to achieve a set high-density image, 
they can differ in their effect on highlight image densities, and 
thence on the ability of a xerographic printer to maintain a specific 
tone reproduction response. 

Accordingly, continued improvements in the stability of 
xerographic development will require the collaborative efforts of 
materials scientists, xerographic engineers, and process control 
software engineers. To facilitate such efforts, materials scientists 
should broaden their knowledge of the physics of xerographic 
development, xerographic engineers should increase their 
understanding of materials chemistry, and control engineers should 
continue to develop control algorithms based on total system 
integration concepts. 
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