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Abstract

Electrolnk is a dispersion of micron and submicron size
polymer particles containing nanometer size colorant pigments in
non-polar fluid. Electrolnk is in the core technology of digital
printing press machines developed and manufactured by HP
Indigo Division the world leader in the field of digital press
machines. Electrolnk is a complex fluid exhibiting non-linear
rheological properties. During the print process electrical field is
applied to the ink that causes the ink particles to move in the field.
Also, as the ink propagates from the container to the final
substrate (paper) to be printed on, the concentration continuously
increases, the ink is subjected to changes in temperature, pressure,
shear, and electrical field; all transforming the rheological
properties. As the concentration increases the ink ceases behaving
as simple dispersion of non-interacting particles. Instead, the ink is
better described as an interwoven structure of two continuous
phases one being an elasto-viscous solid like substance made of
from strongly interacting particles and dissolved liquid the other
being the pure solvent.

This model reminding a wet sponge is called the two-
continuous phases model of Electrolnk. The movement of
individual particles is replaced by the deformation of the solid like
part described by the tools of mechanics and electrodynamics of
continuous media. This model adequately describes the transfer
process of the ink from roller to roller in the press under electrical
field and predicts the relevant parameters leading to 100%
transfer which is necessary to meet the principal requirement to
digital printing vis. that each printed page can be different.

In this presentation a short introduction to Indigo’s special
technology will be given followed by some general findings on the
unique rheological and electrical properties of Electrolnk, and the
two-continuous phases model will be introduced and applied to
electrically assisted ink transfer process.

Experimental data showing good agreement with the model
will also be presented.

Introduction

Hewlett-Packard Indigo Division develops and produces
digital press machines. These machines posses the capability that
each page can be different from the previously printed page. This
is made possible by Indigo’s unique ink named Electrolnk.
Electrolnk is a mixture of a dielectric fluid carrier, polymeric
particles bearing colorants and additives. Due to some of the
additives the polymeric particles acquire electrical charge thus
electrical fields can act on them (Fig. 1). During the process the ink
concentration changes from dilute one in the ink reservoir to
completely dry on the substrate (Fig. 2). In order to ensure that
each page can be different, 100% transfer of the colored part of the
ink from roller to roller is required (i.e. no colorant left behind).
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Figure 1. Electrolnk - Schematic
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Figure 2. Ink transport in the press - Schematic

The Two-Continuous Phases model

While in dilute ink the approximation of non-interacting
particles that supposes only the presence of Stock’s law type forces
produced by the carrier liquid may provide a good enough
description of the flow properties, at higher concentrations, starting
about 10% by volume, as in the transfer processes Xfer 0 and Xfer
1 (refer to Fig. 2), the particles are strongly interacting and the
rheological model of the ink should be quite different. Experiment
shows that at these concentrations the ink exhibits finite yield
stress to flow. At small shear the ink, like solids, exhibit high
modulus and low loss tangent in oscillatory experiments. When the
shear is larger than certain value referred to as the yield stress, the
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modulus drops, the ink starts flowing and the loss tangent goes up
(Fig. 3).

IRy i
TopcaLieetes s 2 -] e
= \ z/ [
oo fee = g’ € §
bt ~
R
mefe il
Rugelip, g J ey

aaa C37 15 0SC00300, Sress sweto s}

Figure 3. Oscillatory flow test at 10Hz
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Figure 4. Variation of the yield stress with concentration

Such behavior can be explained by the Two-Continuous
Phases model of Electrolnk in terms of an interwoven structure of
two continuous phases one being an elasto-viscous solid like
substance made of strongly interacting particles and dissolved
liquid and the second phase being the pure solvent.

The transition from dilute dispersion of non-interacting
particles to the Two-Continuous Phases model can schematically
be illustrated as shown in Figs 5a — 5f. We start with diluted ink
in which non-interacting particles are randomly dispersed (Fig 5a).
As the concentration increases (Fig 5b) the particles get closer to
each other and the increasing interaction between them creates a
structure (pictured schematically in Fig Sc by network). External
mechanical barriers imposed on opposite sides (Fig 5d) confine the
mixture in moving. Thus applying external field on the particles
the “network” is pushed to one of the barriers and gets deformed
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(Fig 5e). The external field can be both gravitational and electrical.
Gravitational field exerts pressure on the network when the
particles have higher density than the surrounding media (which is
the usual case). Electrical field acts directly on the particles which
bear net electrical charges. Finally the network is replaced by
elasto-viscous continuum (Fig 5f).
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Figure 5a — 5c¢. Variation Building the model (Explanation in the text)
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Figure 5d — 5f. Variation Building the model (Continued)

Thus, contrary to dilute ink modeled as a liquid in which solid
particles are dispersed, the Two-Continuous Phases Model treats
the ink rather than a solid in which the liquid is dispersed. The
elasto-viscous “solid” part behaves like a wet sponge; when
pressed it releases liquid (therefore the term “Sponge model”).

Accordingly, for calculating any deformation the techniques
of continuum mechanics and electrodynamics should be applied,
e.g. in sedimentation experiments the “sponge” in pressed under
its own weight (Fig 6.).

Figure 6. Sedimentation process: The upper layers press the bottom layers

Experimental evidence

Sedimentation experiments have shown that the concentration
of the sediment increased logarithmically with both the speed of
centrifugation and the initial concentration — in full agreement with
the calculations carried out using Pascal’s law of hydrostatic
pressure. The process can be explained as follows: the sediment
concentration increases under the acceleration pressure. With
increasing concentration the yield stress goes up. When the yield
stress equals to the pressure the concentration increase stops. In
contrast to this, the model of non-interacting particles predicts
constant concentration of the sediment (according to the densest
packing).
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Figure 7. Electro-rheological measurement: Voltage is applied to the plates

Electro-rheological measurements were carried out in TAI
AR-2000 rheometer using parallel plate geometry and applying
voltage to the plates (Fig 7). Typical results are given in Fig 8.
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Figure 8. Change of apparent viscosity with electrical bias

As one can see, the apparent viscosity decreases when voltage
is applied across medium concentration ink. Actually what
happens is that the solid part (“the sponge”) bearing static
electrical charges gets squeezed under the influence of the applied
field (like under the own weight in sedimentation experiments) and
releases some of the absorbed liquid. Since the liquid has a much
smaller viscosity the total viscosity decreases. As the voltage is
increased the change is smaller since the “sponge” gets harder and
less compressible.

(It has to be noted that conventional electro-rheological fluids
behave differently; they exhibit viscosity increase in electrical
field. The reason is that most electro-sensitive fluids contain polar
but not charged particles that orient themselves along the field and
build up “bridges” between the plates of the viscometer [1]. In
contrast to this, in Electrolnk the particles bear a net electrical
charge which results in much larger forces than the dipole-
electrical field interaction.)
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Application of the Two-Continuous Phases
model to the electrical ink transfer process

The transfer of ink in Xfer 0 and Xfer 1 (refer to Fig 2) is an
electrically induced process. In Xfer 1, for example, the ink arrives
at the photoconductor drum and goes over to the intermediate
transfer drum. The transfer process can be broken down to 3 steps

(Fig 9).
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Figure 9. Electrical transfer - Schematic

The ink arrives at the contact of the drum as a homogenous

material. A voltage is applied to the intermediate drum relative to
the photoconductor. Thus in the nip between the photoconductor
drum and the intermediate transfer drum the solid part of the ink
containing the colorants gets squeezed and releases some liquid.
Upon exit from the nip the drums surfaces separate and the much
less viscous liquid splits into two layers. One layer goes with the
photoconductor drum but, if the parameters are adequate, this
liquid does not contain any colorants (See simulations below).
A simple simulation of splitting at the exit supposes only two
layers, one containing the solids and the second being the pure
liquid. The viscosities of the layers are different. The conservation
of the mass and non-slip conditions on the surfaces are observed.
On the interface separating the layers the shear stress is continuous
and the velocities of the two layers are equal. Simulations were
carried out in the “lubrication” approximation [2]. Some typical
results based on viscosity ratio of 400 between the phases are can
be seen in Figs 10a-c where the calculated velocity profiles in the
gap are shown during exit from the nip. The plots have the
following meaning: Y-axis: the relative distance between the
drums: 0 at the intermediate transfer drum, 1 at the photoconductor
drum; X-axis the relative velocity across the gap (1 at the drums
and zero at the splitting).

Velocity profile in the gap

| et—

e
=

—Layer(1)
—Layer(2)

3

4

Relative Height
£ e

00 01 02 03 04 05 06 07 08 09 1.0 1.1 12
Relative Velocity

Figure 10a. Velocity profile in the gap. Liquid phase: 10%.

The velocity changes across the gap from maximum at the
drums surfaces to 0 where the splitting takes place. When the
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liquid phase is thick enough the splitting occurs in the liquid. Since
the liquid is free of colorants the transfer to the intermediate
transfer drum is 100% and stable (Fig 10a). As the relative
thickness of the liquid decreases the splitting point moves to the
interface (Fig 10b). This corresponds to 100% but unstable
transfer. When the relative amount of the liquid is less than a
certain critical value (in this case 5%) the splitting occurs in the
solid phase and less than 100% colorants are transferred to the
intermediate transfer drum (Fig 10c).
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Figure 10b. Velocity profile in the gap. Liquid phase: 5%.
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Figure 10c. Velocity profile in the gap. Liquid phase: 1%.
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Conclusions

The Two-Continuous Phases model of Electrolnk

e Provides better agreement with the experimental
observations than the classical dispersion model

. Adequately describes the transfer process of the ink
from roller to roller under electrical field in HP-Indigo
presses

. Is capable of predicting the relevant parameters leading
to 100% transfer.
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