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Abstract 

In the last decade, a number of intensive studies have been 
conducted to achieve efficient polymer light-emitting diodes 
(PLEDs). As a result of extensive multidisciplinary efforts, modern 
PLEDs offer substantial benefits over conventional cathode ray 
tubes (CRT) and liquid crystal displays (LCD).  PLEDs display 
provides superior brightness and color purity, markedly lower 
power consumption, as well as full viewing angle without 
compromising image quality. Compared with small molecule 
organic LEDs (OLEDs), PLEDs use solution-based processes, 
which offer the potential for lower cost and roll-to roll processing 
on flexible substrates.  

An efficient PLED device typically consists of a stack of 
organic/polymeric thin layers, each of which performs a specific 
function aimed at improving the device performance or achieving 
the desired device functionality.  In many cases, these layered 
structures are formed from the polymeric solution by spin-casting 
or printing with subsequent removal of the solvent carrier.  
However, solvent from the freshly deposited film frequently 
dissolve or partially dissolve the underlying layer, resulting in loss 
of the desired structure and corresponding device functionality. 
Undesirable changes in the morphology and interfaces of the 
polymer films are another detrimental effect associated with 
incompatible solvent and its removal.   

To make more robust hole transport layers (HTLs) and avoid 
solvent damage from subsequent emissive layer, the most common 
approach is to introduce polymerizable functional groups onto the 
base structure of the molecules with hole transporting (HT) 
property to form a cross-linkable HT molecules, which can form a 
cross-linked HTL upon treatment.  However, such a type of 
polymerizable hole transport material is expensive and difficult to 
make, especially in large quantity.   

Herein we report a new approach to address this issue:  
Commercially available HT polymers are embedded into a cross-
linked polymer network to “lock” uniformly distributed HT 
polymers inside the cross-linked polymer matrix.  This approach 
proves to be more advantageous in terms of process simplicity and 
cost. Similarly, the same class of materials can potentially be 
employed in other polymer electronic devices, such as the organic 
photoconductor.  

An organic photoconductor commonly used in 
electrophotographic applications is a dual layer structure 
consisting of a thin (0.1um - 2 um) charge generation (CGL) 
bottom layer and a thick (about 20 um) charge transport (CTL) top 
layer.  Light passes through the transparent CTL and strikes the 
CGL that generates free electrons and holes.  Electrons are 
collected by the electrical ground of the photoreceptor and holes 
are driven towards to top of the CTL by an applied electrical field.  

CTL allows hole transport towards the surface, at which they are 
used to neutralize negative surface charges deposited during the 
pre-charging process.  In essence, CTL consists of non-conductive 
organic material (usually polymer) with charge transport moieties 
embedded into it.  We believe this semiconducting polymer matrix 
can act as charger transport materials for organic photoreceptor. 

Introduction 
The growth and proliferation of electronic devices has created 

a significant industry-wide demand for new, low-power, light and 
low-cost display technologies.  This demand underlies a current 
display development initiative within display industries.  In the last 
decade, a number of intensive studies have been made to achieve 
efficient polymer light-emitting diodes (PLEDs).  Chemistry and 
chemical principles have played a crucial role in the evolution of 
efficient PLEDs.  As a result of extensive multidisciplinary efforts, 
modern PLEDs offer substantial benefits over conventional 
cathode ray tubes (CRT) and liquid crystal display (LCD).  PLEDs 
display provides superior brightness and color purity, markedly 
lower power consumption, as well as full viewing angle without 
compromising image quality.  Compared with small molecule 
organic LEDs (OLEDs), PLEDs use solution-based processes, 
which offer the potential for lower cost and roll-to roll processing 
on flexible substrates.  To realize these favorable advantages, 
significant chemical and physiochemical challenges must be 
addressed.  These challenges include (i) excellent multilayer 
solution-processability , (ii) improved efficiency via balanced 
charge carrier injection and leakage current reduction, (iii) better 
thermal stability and (iv) increased operational lifetime [1].   

An efficient PLED device typically consists of a stack of 
organic/polymeric thin layers, each one of them performing a 
specific function aimed at improving the device performance or 
achieving the desired device functionality.  In many cases, these 
layered structures are formed from the polymer solution by spin-
casting or printing with subsequent removal of the solvent.  
However, solvent from the freshly deposited film frequently 
dissolve or partially dissolve the underlying layer, resulting in loss 
of the desired structure and corresponding device functionality. 
Undesirable changes in the morphology and interfaces of the 
polymer films are another detrimental effect associated with 
solvent removal.  To make more robust hole transport layers 
(HTLs) and avoid solvent damage from subsequent emissive layer, 
the most common approach is to introduce polymerizable 
functional groups onto the basic structure of the molecules with 
hole transporting (HT) property to form a cross-linkable HT 
molecules, which can form a cross-linked HTL upon spin coating 
[2-8].  However, this type of polymerizable hole transporting 
material is expensive and difficult to make.  Herein we report a 

344 ©2012 Society for Imaging Science and Technology



new approach to address this issue:  Commercially available HT 
polymers are embedded into a cross-linked polymer network to 
“lock” uniformly distributed HT polymers inside the cross-linked 
polymer matrix.  This approach proved to be more advantageous in 
terms of process simplicity and cost. 

Results and Discussion  
The basic multilayer heterostructure and energy level diagram 

of PLED is shown in Figure 1.  Components include a transparent 
conducting anode, hole injection layer (HIL), HTL, emissive layer 
(EML), electron-transporting layer (ETL), and metallic low work 
function cathode.  For a convenient demonstration, we have chosen 
indium tin oxide (ITO) as anode, poly (3,4-
ethlyenedixoythiophene)- poly(styrene sulfonic acid (PEDOT-
PSS) as hole injection layer, poly(9,9- dioctylfluorene-co-N-(4-
butylphenyl)diphenylamine (ADS132GE) as HTL, poly(9.9-
dioctylfluorenyl-2,7-diyl) (PFO) as EML and Ba-Al as the cathode 
(chemical structures shown in Figure 2).  This set of materials 
might not be optimum in terms of interfacial energy alignment for 
the transport of holes and electrons, but suffices for the 
demonstration of the function of our embedded HTL materials. 
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Figure 1 Schematics of Typical PLED Heterostructure 
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Figure 2 The structures of HTL, EML and HIL polymers 

In a demonstration device, the HIL, HTL, and EML layers 
were sequentially spun-cast onto a glass substrate with a pre-
patterned ITO anode.  A Ba-Al film was then thermally evaporated 
to form a cathode.  As we know, solvents that are used for EML 
polymers are commonly shared by the under-layer HTL polymer.  

To minimize the undesirable impact from solvents that are used by 
the EML polymer, we embed the HTL molecules into the inert 
cross-linked polymer network.  The cross-linkable polymer is 
selected so that the electrical and electro-optical properties of the 
embedded polymer are retained.  At the same time, the cross-
linked polymer network helps maintain the morphology of the 
embedded organic film during solvent removal. There are many 
options could be employed to form the cross-linked inert polymer 
network: a mixture of cross-linkable monomer, oligomers, and 
polymers, in addition to cross-linking agent and an initiator. The 
cross-linking agent could be a 2-branch, 3-branch, or 4-branch 
cross-linker.  Cross-linking could be activated using appropriate 
energy sources such as thermal process or UV-exposure.  Some 
examples of the cross-linkers are 2-branch cross linkers such as 
ethoxylated (2) bisphenol A dimethylacrylate (EBDA) and 3-
branch corsss linker such as trimethylopropanes trimethylacrylates 
(TPTA) to increase the cross link density (Figure 3). 
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Figure 3 The structures of cross-linkers EBDA and TPTA 

Two commercial available cross-linking agents, the thermally 
curable binder ethoxylated bisphenol A dimethacrylate esters 
(EBAD)  and the UV curable binder NOA83H, were investigated 
for incorporating hole transport material ADS132 into the polymer 
network to form the HTL.  The HTL also acts as an electron 
blocking layer (EBL).  First, the solvent resistibility of the spin-
coated films from the mixture solution of ADS132 and cross-
linking material were tested by washing the film with chloroform 
and toluene.  In both cases using EBAD and NOA83H, the 
potoluminescence of the films before and after washing remained 
the same.  No change of film thickness and morphology was found 
after washing the films with the solvents 

Thin films of HTL with and without a supporting cross-linked 
polymer were fabricated by spin-coating the ADS132GE or a 
mixture of ADS132GE and EBDA or NOA83H on ITO substrates.  
These films were tested by washing with toluene and chloroform 
and subsequently measuring their photoluminescence (PL).  For 
reference, the PL of HTL-only samples was also measured.  The 
results, shown in Figure 2 (right), suggest that the HTL material 
was mostly washed away when exposed to the solvent used for the 
EML deposition.  On the other hand, the HTL material was mostly 
retained when using either cross-linking agent.  This is verified by 
corresponding AFM studies that show no change of the film 
thickness and morphology after the solvent washing.   
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Figure 3 Photoluminescence of the: (1) HTL/EML film; EML was deposited 
directly on the HTL embedded into UV cross-linked matrix (similar result was 
obtained for the thermally cured polymer); (2) EML only; (3) HTL only; (4) HTL 
embedded into UV cross-linked matrix; (5) case of (4) after washing with 
toluene (used as a solvent for depositing both the HTL and the EML); (6) case 
of (3) after washing with toluene.  

Representaive devices and their device characteristics are 
shown in Figures 4 and  5.  Sample A doesn’t have a HTL/EBL, 
while sample B and sample C have ADS132 embedded in EBAD 
and NOA83H, respectively, as HTL material. The selected HTL 
material, ADS132 has a LUMO energy level that provides a barrier 
to effectively block electrons coming from the cathode.  This 
electron blocking layer (EBL) drastically reduces the leakage 
current as evidenced by I-V characteristics of Fig 4B & C vs 
compared with Fig 4A,  which tremendously improves external 
emission efficiency.   The UV cured binder NOA83H (for 
ADS132GE) shows better performance than thermally cured 
binder EBAD in blocking leakage current (electron blocking) by 
100X to 400X (compare Fig 4B & 4C).  In addition to the effect of 
electron blocking from ADS 132, the low current may be also due 
to the the extremly high resistivity of NOA83H.  HTL/EBL that 
uses the NOA83H binder also has higher luminescent efficiency.  
For example, when operated at 4 volt, the EL peak intensity of 
NOA83H (5C) is 1/3 and 1/30 that of PFO only (5A) and EBAD 
(5B) respectively (Fig. 5), but using only 1/1000 and 1/400 the 
amount of current respectively (Fig 4).   Therefore, the device with 
HTL in NOA83H has about 330X and 13X more efficiency than 
PFO only (without HTL/EBL) and HTL in EBAD device, 
respectively, which results from the large effect from the leakage 
current reduction. The EL spectrum distortion shown in device B 
with EBAD binder might be the result of deep penetration of PFO 
into the porous EBAD layer; Another possible explainnation is that 
the excitons are generated at different interface compared with 
PFO only devices so that the emission may come from ADS132.  
The different dielectric environment from the surrounding (EBAD 
and ADS132GE) could modify the energy structure of PFO.  The 
enhancement of electroluminescent efficiency is also owing to a 
more balanced electron and hole injection by introducing a HTL.  
This result  demonstrates the effectiveness on HTL structural 
protection  offered by the cross-linked NOA83H and the 
preservation of HTL electrical  property that was designed for. 
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Figure 4  Electrical characteristics of sample structure A: 

ITO/PEDOT/PFO/Ba-Al, B: ITO/PEDOT/ADS132GE- 
EBAD/PFO/Ba-Al, and C: ITO/PEDOT/ADS132GE- 

NOA83H/PFO/Ba-Al. 
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Figure 5  EL intensity and Spectrum of three devices A, B and C at bias 
voltage of 4 volts. 

It is noteworthy that we chose PFO as the emissive layer to 
prove the feasibility of our concept.  Other small organic 
molecules or polymer light emitting materials, quantum dots (QD) 
and polymer/QD hybrid emitting devices could be easily used.  We 
are currently developing the polymer/semiconducting nanocrystal 
hybrid pixel for improved life time, even better color purity and 
possibly power efficiency.   
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Table I: Quantum efficiency of device A, B and C at 4V bias.  
Devices were placed within an integrated sphere to collect all 
the emitted light 
Device  Device structure Quantum 

efficiency (%) 

A ITO / PEDOT / PFO / Ba-Al 0.17 

B ITO / PEDOT / HTL-EBDA / 

PFO / Ba-Al 

2.94 

C ITO / PEDOT / HTL- NOA83H 

/ PFO / Ba-Al 

8.71 

The quantum efficiency of the devices was measured by 
placing the devices within an integrating sphere so that all the 
emitted light was collected.  Table 1 compares the quantum 
efficiencies of the devices measured at 4V.  The quantum 
efficiency for device B and C was 17 times and 50 times that of 
device A, respectively.  The high efficiency of device C is 
primarily due to the significant reduction in leakage current as 
compared to devices B and A.  A more balanced electron and hole 
injection also contributed to the enhancement of 
electroluminescence efficiency when the HTL was added.  It is 
noteworthy that a similar scheme could be used to incorporate 
emissive species like, for example, semiconducting nanocrystals or 
their mixtures with the appropriate polymer agents to form a 
multilayer structure. 

An organic photoconductor commonly used in 
electrophotographic applications is a dual layer structure consisting 
of a thin (0.1um - 2 um) charge generation (CGL) bottom layer and 
a thick (about 20 um) charge transport (CTL) top layer.  Light 
passes through the transparent CTL and strikes the CGL that 
generates free electrons and holes.  Electrons are collected by the 
electrical ground of the photoreceptor and holes are driven towards 
to top of the CTL by an applied electrical field.  CTL allows hole 
transport towards the surface, at which they are used to neutralize 
negative surface charges deposited during the pre-charging 
process.  In essence, CTL consists of non-conductive organic 
material (usually polymer) with charge transport moieties 
embedded into it.  We believe this semiconducting polymer matrix 
can act as charger transport materials for organic photoreceptor. 

Conclusions 
We have successfully fabricated multilayer 

electroluminescent pixels using a process of embedding HTL 

materials into cross-linkable agents.  We have the fine-tuned 
formulation of cross-linkable monomers to produce uniform thin 
film layers, which shows good performance in PLED sample 
devices.  The electroluminescence efficiency is enhanced by the 
more balanced electron and hole injection with this type of HTL.  
This result  demonstrates the effectiveness of the HTL structural 
protection  offered by the cross-linked NOA83H and the desired 
preservation of HTL electrical  properties.  This process will be 
very useful for solution–based multi-layer PLED devices 
fabrication.  We believe this semiconducting polymer matrix can 
act as charger transport materials for organic photoreceptor. 
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