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Abstract 

Traditional assembly line manufacturing is speculative, costly 
and environmentally unsustainable. It is speculative because it 
commits substantial resources—energy, materials, shipping, 
handling, stocking and displaying—without a guaranteed sale. It is 
costly because each of these resources—material, process, people 
and place—involves expense not encountered when a product is 
manufactured at the time of sale. It is environmentally 
unsustainable because, no matter how much recycling is done, not 
using the resources unless actually needed is always a better path. 

As part of the RAGNAROK (Research on Advancing Glass & 
Nonorganic Applications to Recreate Objects & Kinetics) project 
in HP Labs, we identified glass as a promising candidate for 
additive manufacturing based on 3-D printing methods. Glass is a 
silica-based material. With 90% of the earth’s crust composed of 
silicate minerals, there will be no shortage of silica resources. 
Glass is easy to recycle and is environmentally friendly. Glass is 
inexpensive but looks precious, is pleasant to the touch and is so 
familiar that customers will not be disappointed by its fragility—
under certain conditions.  

A major need, and concomitantly a major challenge, for 3D 
printed glass is transparency. We will discuss several methods how 
to achieve it. 

3D Printing and warm glass 
Warm glass or kiln glass is the oldest glass manufacturing 

method. Glass powder, or frit, is shaped in a mold and fired at 
moderate temperatures. The powder fuses and a solid glass object 
is the result. Depending on firing temperature and duration, the 
glass grains just stick and keep their sandy appearance or melt 
together and form a smooth body. The major difference between 
kiln glass and blown glass is that the molten glass mass is not 
agitated in the kiln glass process. Therefore kiln glass contains 
many more air bubbles than blown glass. This has consequences 
for the transparency of the final glass object. The finer the frit, the 
better the detail but the more prevalently that the air bubbles are 
trapped. This scatters the transmitted light and turns the object 
opaque. 

3D printing cannot replace the firing process, but does make 
the mold obsolete. The key to transparency is the ‘ink’. We will 
concentrate on extrusion printing, but the same principals apply to 
powder bed printing.  

There are three ways to suppress scattering and reach 
transparency: a) index matching between glass grain and solvent, 
b) big glass grains, and c) small glass grains. 

Index match 
Glass grains become invisible -- that is, non-scattering – 

when the solvent they are suspended in has the same refractive 
index as the glass. Indeed, a suspension of glass in a solution of for 
example sodium silicate or liquid glass shows reduced scattering. 

But pastes made like that are not printable. Under pressure, the 
solution is squeezed out of the paste and jamming occurs. This is a 
well-known phenomenon easily observed when walking on wet 
sand on the beach. Firing causes gas formation even with well 
dried green ware which leads to bubbling of the sample and loss of 
all detail as shown in figure 1. 

 

 
Figure1: Glass sample with sodium silicate solution as the index matching 
fluid. Firing of the sample leads to bubbling and loss of all detail. 

Big glass grains 
Scattering has only little influence on the transmitted light 

when the diameter of the scatterer is either bigger than ~ 20 µm or 
smaller than 400 nm, independent of the refractive index 
difference between scatterer and surrounding medium (see for 
example [1]). We have found that glass frit with particle sizes 
between 38 µm and 75 µm results in transparent samples with 

 

 
Figure 2: Transparent glass sample with air inclusions. 

sufficient detail. In figure 2 air inclusions are clearly visible. Note 
the choice of binder can have a negative effect on transparency as 
well. We followed first the recipes published by the University of 
Washington [2] and added approximately 40wt% of 
polysaccharides to the glass water mixture. Polysaccharides 
caramelize at temperatures between 110ºC and 180º. Above 250⁰C 
caramel decomposes into carbon mon- and di-oxide, hydrocarbons, 
alcohols, aldehydes, ketones and several furan derivatives which 
are volatile [3]. If the caramel is trapped inside the sample, this 
decomposition is incomplete and leads to a discolouration of the 
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sample (see figure 3). The polysaccharide content has to be 
reduced drastically to avoid this effect. 

 

 
Figure 3: For glass sample on the left 40wt% of saccharides were used as 
binder, for the one on the right only 5wt%. The left on is discoloured, the right 
one not. 

Small glass grains 
As mentioned before scattering should be negligible for 

particles smaller than 400nm (spherical) diameter. Glass is a brittle 
material. Milling leads quickly to sub-micron particle sizes. In 
figure 4 a typical number size distribution is shown. Even though 
the average particle size is about 700 nm the majority of particles 
are below 400 nm diameter.  

 

 
Figure 4: Typical number distribution of a milled glass sample. Please note 
that the x-axis is the radius and not the particle diameter. 

All milled glass samples show excellent detail but are opaque 
and have an appearance more like ceramic than vitreous 
appearance. Why? 

Density measurements show that sub-micron particles have a 
random packing after firing, whereas particles with diameters in 
the micron range have a density so high that the single particles 
must have melted and flowed together. This result is 
counterintuitive and demands further investigation. Random 
packing means that the sample has only ~ 60% of the density of a 
solid block of glass; the rest is trapped gas. These gas pockets are 
scatterers in their own right and probably on the order of a micron 
in size, which leads to the opaque appearance. This assumption 
will be further investigated. 

3D Printing and Cold glass 
Cold glass stands for all materials where glass is used in a 

strengthening component in another cured matrix. The weight 
percentage of the glass component is only between 5 and 20 wt% 
and curing does not rely on fusing of the glass particle. First 
experiments show that the toughness and elasticity of natural 
polymers change with the amount of added glass frit. A low 

 
Figure 5: On the left, the sample is made from particles with an average 
diameter of 700 nm. On the right, the average particle size was 50 µm. Both 
samples were fired following the same firing schedule. 

weight percentage of glass reduces shrinkage but the mechanical 
characteristics of the sample after drying are governed by those of 
the polymer. The sample becomes tougher but more brittle with 
increasing glass content. Beyond 50wt% of glass we find a decline 
in elastic strength. The elasticity of the polymer makes it possible 
to apply the glass polymer film on elastic substrates.  The best 
results achieved so far are with materials with are index matched 
to the glass particles. Index matching helps particle dispersion and 
suppresses scattering independent of particle size. 

 

 
Figure 6: Micrograph of a translucent polymer string with 60wt% glass 
loading. Glass index and polymer index are matched. The glass particles are 
not visible but scattering is caused by air inclusions clearly visible as round 
and elongated bubbles. 
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