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Abstract 

We prepared solid-state electrochromic (EC) cells based on 
phthalate derivatives and containing a gel electrolyte.  The cells 
showed vivid color changes via electrochemical reactions, i.e., 
from being water transparent to assuming one of the three primary 
colors (cyan, magenta, and yellow).  Moreover, we obtained 
continuous-tone images by using the three primary-color EC cells.  
The formation of continuous-tone images by using the EC cells 
was realized by applying a rectangular-wave voltage with various 
duty ratios.  In addition, according to a subtractive color-mixture 
process, we obtained multiple color representations, including 
intermediate red, green, and blue colors, by stacking two of the 
three primary-color EC cells. 

 Introduction 
An electrochromic display (ECD) has attracted considerable 

attention as a strong candidate for application in novel paper-like 
displays.  Flexibility is an essential requirement for realizing 
paper-like features and texture that are required in an electronic 
paper-like display.  With regard to flexibility, an ECD has the 
advantage of utilizing a flexible plastic substrate, a flexible gel 
electrolyte, and organic materials[1-5].  Furthermore, an ECD has a 
high reflective contrast ratio and satisfies high visibility 
requirements. 

In the early 2000s, many researchers focused extensively on 
viologen[6-10] or conductive polymers, such as poly(3,4-
ethylenedioxythiophene) (PEDOT)[11-14], as typical organic EC 
materials that can be used for fabricating color ECDs.  Recently, 
many of their derivatives were studied for realizing a flexible and 
color ECD[15-18].  Currently, some of them showed good properties 
such as memory effect, coloration efficiency and long lifetime.  
However, these derivatives have still not achieved the color 
change from the perfectly clear transparent state (at visible region) 
to three primary colors state.  EC materials that show color 
changes from being colorless and clear to assuming one of the 
three primary colors (such as red, green, and blue, or cyan, 
magenta, and yellow) are required for realizing full-color 
electronic paper-like imaging devices.  On this basis, we studied 
the electrochemical properties of phthalate derivatives[19].  In 
previous studies, the three primary colors cyan, magenta, and 
yellow were electrochemically obtained using diacetyl benzene 
(DAB), dimethyl terephthalate (DMT), and biphenyl dicarboxylic 
acid diethyl ester (PCE), respectively, in an ITO sandwich cell.  
Each color obtained was confirmed as one of the three primary 
colors by colorimetric measurements based on CIE 1931 standard 
colorimetric observer.  The Yxy values for the colored state of 
DAB, DMT and PCE were (0.21, 0.24), (0.38, 0.25) and (0.41, 
0.48), respectively[20].  It was revealed that the anion radical of 
dimethyl terephthalate generated at the cathode was magenta in 

color and that the coloration was affected by a supporting 
electrolyte and solvent.  In addition, we have demonstrated that 
red, green, and blue colors could be obtained by stacking two of 
the three primary-color EC cells[20].  Flexible EC cells with a gel 
electrolyte containing N-methyl-2-pyrrolidinone (NMP) as the 
solvent have been demonstrated[21].  The coloring and bleaching 
properties of flexible EC cells are comparable to those of liquid-
electrolyte-based cells.  However, the use of NMP as the solvent 
did not improve the memory properties considerably, even in the 
case of gel-electrolyte-based cells.  After further discussion, it was 
established that the coloring and memory properties of phthalate-
derivative-based EC cells were clearly improved by employing 
dimethyl sulfoxide (DMSO) as the solvent[22].  

It is necessary to control the tone of the color in display 
devices.  Until now, the formation of continuous-tone images by 
using phthalate-derivative-based EC cells was not sufficiently 
examined.  In this study, in order to realize the formation of 
continuous-tone images by using phthalate derivatives, we 
investigated EC cells with gel matrices containing DMSO as the 
solvent, and successfully obtained continuous-tone images using 
EC cells by applying various voltages[23].  

 Experimental 

Materials and reagents 
We used dimethyl terephthalate (DMT; Tokyo Chemical 

Industry Co., Ltd.), 4,4′-biphenyl dicarboxylic acid diethyl ester 
(PCE; Tokyo Chemical Industry Co., Ltd.), and 1,4-diacetyl 
benzene (DAB; Tokyo Chemical Industry Co., Ltd.) as EC 
materials. In addition, tetra-n-butylammonium perchlorate (TBAP; 
Kanto Chemical Co. Inc.) and ferrocene (Fc; Tokyo Chemical 
Industry Co., Ltd.) were used as a supporting electrolyte and a 
counter material, respectively.  EC materials, TBAP and Fc were 
used as received.  DMSO (Sigma-Aldrich Co.) was used as the 
solvent after removing the water using molecular sieves.  
Poly(vinyl butyral) (PVB; BX-1; Sekisui Chemical Co., Ltd.) was 
used as the host polymer for the gel electrolyte used in this study. 

Preparation of gel electrolyte 
A PVB-based gel electrolyte for use in the EC cell fabricated 

in this study was prepared according to the following procedure.  
An EC solution was prepared by dissolving 50 mM of a phthalate 
derivative, 50 mM of TBAP, and 25 mM of Fc in DMSO.  One 
gram of this EC solution was mixed with an appropriate amount of 
PVB, and the resulting mixture was allowed to stand for a week 
for obtaining a uniform PVB-based gel electrolyte. 
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Cell fabrication and EC measurements 
A gel-electrolyte-based EC cell was fabricated by 

sandwiching the obtained gel electrolyte containing the EC 
solution between a pair of ITO electrodes, maintaining an inter-
electrode distance of 300 μm with a spacer.  Absorption spectra 
were recorded in situ by using a diode-array detection system 
(USB2000; Ocean Optics, Inc.).  The continuous-tone images 
generated by the EC cells were examined by employing a 
multifunction synthesizer (WF1944A; NF Corporation) and a 
handmade analog switch.  The analog switch was placed between 
the synthesizer and EC cells.  The analog switch contains a relay 
circuit and converts a 0 V output voltage to an open-circuit output 
voltage.  The applied voltage was rectangular-wave voltage whose 
values alternatively switched between −2.3 V and 0 V.  In this 
driving system, a voltage of −2.3 V was directly applied to the EC 
cells through the analog switch when the function synthesizer 
generated an output of −2.3 V.  On the other hand, the EC cells 
were maintained in an open-circuit state when the function 
synthesizer generated an output of 0 V.  This is because of the fact 
that the bleaching rate in the open-circuit state is slower than that 
in the short-circuit (0 V) state.  The use of the analog switch is 
effective in reducing the duty ratio of the applied bias wave, 
leading to reduction in energy consumption.  Duty ratio is defined 
as the ratio of the period for which a voltage of −2.3 V was 
applied, to one cycle period of a rectangular wave.  The waveform 
of applied rectangular wave voltage is shown in Scheme 1.  All 
experiments were conducted at the ambient laboratory temperature 
(20–25 °C).  

 

 
Scheme 1. Waveform of applied rectangular wave voltage. 

Results and discussion 
Continuous-tone images were obtained by applying 

rectangular-wave voltages of −2.3 V/open-circuit with various 
duty ratios.  The change in the absorption spectra and tone of 
continuous-tone digital camera images are shown in Fig. 1 and 
Fig. 2, respectively.  The absorbance of the DMT cell at a duty 
ratio of 5% increased and then reached a constant value after 300 
s.  This constant value of the absorbance depended on the duty 
ratio.  However, the time required for reaching the constant 
absorbance at different duty ratios was nearly the same.  This 
result clearly indicated that a continuous-tone image could be 
obtained using the gel-electrolyte-based DMT cell by applying a 
rectangular-wave voltage with various duty ratios.  Similar results 
were obtained for the DAB and PCE cells.  The detailed 
mechanism of continuous-tone image formation by using the gel-
electrolyte-based DMT cell can be explained as follows.  When we 
applied a rectangular-wave voltage with a 5% duty ratio at 5.0 Hz 
to the DMT cell, −2.3 V was applied during the first 10 ms and 

DMT was reduced to a colored state on the surface of the cathode.  
After this process, the drive circuit became open and colored DMT 
diffused into the gel electrolyte from the cathode, depending on 
the concentration gradient.  No bleaching due to an electrode 
reaction was observed.  The coloration reaction and diffusion were 
repeated at cycles of 5 Hz.  When the rectangular-wave voltage 
was applied, the absorbance of the DMT cell continued to increase 
because the coloration rate was faster than the bleaching rate.  The 
amount of colored species, therefore, gradually increased with 
each cycle.  However, as time progressed, the bleaching reaction 
of the colored species occurred because of the instability of the 
anion radicals of phthalate derivatives and/or collision between the 
anion radicals and diffused ferrocenium ions generated at the 
counter electrode.  Finally, the absorbance reached a constant 
value because of an appropriate balance between the generated and 
quenched amount of the colored species. 
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Figure 1. Change in the absorbance of (a) PCE, (b) DAB, and (c) DMT cells 
containing a gel electrolyte under the application of –2.3 V/open-circuit 
rectangular-wave voltages with various duty ratios. 
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Figure 2. Photographs of each phthalate-derivative-based EC cell with a gel 
electrolyte after the application of –2.3 V/open-circuit rectangular-wave 
voltages with various duty ratios for more than 400 s.  The coloration area of 
the EC cells was 1.0 × 1.0 cm2. 

The constant value of the absorbance of each gel-electrolyte-
based EC cell was plotted against the duty ratios applied to each 
EC cell, as shown in Fig. 3.  Interestingly, the constant value of the 
absorbance followed a linear relationship with the duty ratio for 
each cell.  This indicates that we can easily control the tone of the 
three primary-color EC cells containing a gel electrolyte by 
changing the duty ratio.  This characteristic is very useful for using 
EC cells in display devices.  Thus, continuous-tone representation 
was realized using the three phthalate-derivative-based, primary-
color EC cells containing a gel electrolyte.  This clearly indicates 
that this system can be used in the fabrication of full-color display 
devices.  In addition, high absorbance can be obtained in all EC 
cells by applying a duty ratio less than 5%; thus, the driving 
procedure described in this paper helps in realizing constant 
coloration with low energy consumption.  A low duty ratio would 
reduce any damage to the EC cell and would increase its lifetime.  
At least, we could not observe any degradation of gel-electrolyte-
based EC cells during experiment.  And in the case of NiO counter 
material system, we achieved 10 times higher switching stability 
than in the Fc counter material system[24].  

 
Figure 3. Maximum absorbance of each phthalate-derivative-based EC cell 
as a function of duty ratio.  –2.3 V/(open-circuit rectangular-wave voltages 
with various duty ratios were applied for more than 400 s. 

Parameters such as frequency, duty ratio, and voltage can be 
improved by material modification, choice of counter material, and 
stabilization of the colored species. 

We also obtained an intermediate color image by stacking 
two gel-electrolyte-based EC cells for fabricating a full-color 
display.  Fig. 4 shows the photographs of several stacked EC cells.  
For example, we stacked the “cyan” (DAB) and “yellow” (PCE) 
cells, and then varied the intensity of the cyan and yellow colors.  
As a result, we could obtain multiple colors between cyan and 
yellow, including intermediate green color.  We successfully 
controlled multiple colors, including intermediate red, green, and 
blue colors, according to a subtractive color-mixture process.  On 
the basis of these results, we expect that the fabrication of a full-
color display is feasible by using phthalate derivatives showing 
three primary colors and continuous-tone images. 

Conclusion 

We successfully obtained continuous-tone images and 
multiple color representation by using phthalate-derivative-based 
EC cells containing a gel electrolyte.  Each EC cell enabled 
continuous-tone representation when a rectangular-wave voltage 
with various duty ratios was applied to each cell.  According to a 
subtractive color-mixture process, we achieved multiple colors, 
including intermediate red, green, and blue colors, by stacking two 
of the three primary-color EC cells.  It is expected that the 
phthalate-derivative-based EC cells can be used for realizing full-
color electronic paper, EC displays, and other EC applications. 
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