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Abstract 

Monitoring inkjet performance requires control of parameters 
such as drop velocity, direction and drop volume.  Present 
methods to determine drop volume utilize optical vision systems or 
calculation of an average drop mass from large numbers of drops 
on a precision balance.  

 An alternative technique based on QCM (Quartz Crystal 
Microbalance) was assessed to measure the mass of single drops. 
Low-cost plano-convex 6 MHz AT-cut quartz resonators were used 
to measure single inkjet drops. Since the footprint of these ink 
drops is of the order 100 µm the QCM detector was used in a 
‘localized spot’ measurement mode in contrast to the typical large 
area detection mode. The sensitivity of an inner 0.5 mm circle was 
determined to be 5.46 x 10-10 g/Hz for solid silver films.   

 Single drops of an oil-based ink of 50 pL nominal volume 
were jetted using a Xaar126 piezo inkjet printhead onto the QCM 
target area and produced signals with a SNR better than 70:1. 
This paper presents the technical challenges relating to liquid 
droplet volume measurements using higher frequency oscillators. 

Introduction 
Inkjet printing showed to be a viable alternative to commonly 

used coating and deposition techniques, due to its low volume 
nature in combination with high ejection frequencies, its high 
efficiency especially with respect to precious materials and its full 
digital nature. While drawbacks, such as lateral resolution as well 
as throughput are counteracted by appropriate waveform design as 
well as stacking concepts, drop volume and respectively also 
droplet velocity consistency was only lately considered with 
respect to cross-talk phenomena [1], originating from the structural 
design and the fluidic crosstalk resulting from the share manifold 
design used in printheads with high nozzle density.  

While the effect of varying droplet volumes ejected from a 
nozzle were not yet considered highly critical, emerging 
applications are narrowing the specifications, as the application of 
biological tracers or semiconducting materials calls for ever lower 
amounts of functional material with higher accuracy. QCM 
measurements offer the possibility to provide the data for both 
scenarios, the droplet volume ejected from the printhead and the 
material loading after evaporating the carrier needed for the 
adaptation to the viscosity requirements of the printhead. 

Measuring liquids was discussed in the literature with respect 
to fully immersed crystals or droplet measurements utilizing 
several µL of fluid samples, in order to investigate viscoelastic 
properties of the fluids, wetting characteristics relating to 
surfactants or the adsorption of molecules. Measuring the dried 

functional material on the surface of a crystal was extensively 
studied in the literature. 

Localized Quartz Crystal Microbalance (LQCM) 
It was recently [2] demonstrated that the mass sensitivity of 

any mass measuring device depends on the acceleration acting on 
the measured mass. By associating the acceleration with the field 
intensity the mass sensitivity will be related to the intensity of the 
field acting on the measured mass. In case of the quartz crystal 
microbalance a harmonic inertial field is created at the crystal 
surface during vibration. The maximum value of the acceleration 
of the harmonic motion is million times higher than the 
gravitational acceleration and, thus, the intensity of the harmonic 
inertial field is million times higher than the intensity of the 
gravitational field.  

On the surface of a quartz crystal resonator the field intensity 
has a Gaussian distribution with the maximum at the centre of the 
quartz resonator disk. The localized quartz crystal microbalance is 
using only a very small area at the centre of the quartz resonator 
disk in order to achieve a higher sensitivity on the location with 
the highest intensity of the harmonic inertial field. The local mass 
sensitivity can be experimentally measured by vacuum deposition 
of a small spot of metal. Using common AT-cut resonators, plano-
convex, 14 mm in diameter with a fundamental frequency of          
6 MHz, the measured localized sensitivity was k=5.45776x10-10 
g/Hz for a spot diameter of 0.5mm and k=7.853982x10-10 g/Hz for 
a spot diameter of 1mm. When the entire mass sensitive area with 
a diameter of about 6mm is coated the mass sensitivity is 
k=6.1988x10-9 g/Hz. It results that the mass sensitivity can be an 
order of magnitude higher than the theoretical sensitivity of 
6.1988x10-9 g/Hz, when it is used only within a small diameter of 
about 0.5 mm on the central part of the quartz resonator. 

Measuring fluidic samples is further complicated by the 
dissipation of energy in the fluid, which introduces an exponential 
decay of the shear wave amplitude with increasing penetration into 
the liquid sample. As a result only a small portion of the sample 
will mathematically respond to the shear motion introduced at the 
crystal-liquid interface. The fraction resonating can be represented 
by the decay length given by  

 

)/( lql f ρπηδ =  (1) 

 
where δ is the decay length, ηl is the dynamic viscosity of the 
fluid, ρl is the density of the sample and fq is the frequency of the 
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crystal. Using ηl of 10 mPa.s, ρl of 1 g/ccm and fq of 6 MHz results 
in a decay length δ of 728 nm, which implies that most of the 
deposited volume lies outside the penetration depth and will not be 
reflected directly by the measurement 

Experimental 
The experiments presented were performed using a    

Xaar126-50 pL printhead utilizing an unpigmented oil ink    
(Toyo, US). Printing was carried out on an X-Y-stage performing 
with 1 µm positioning accuracy. Alignment was carried out using 
a DinoLite digital microscope. In order to discriminate single 
droplet events, jetting frequencies were kept below the readout 
frequency of the system. This, furthermore, allowed the 
suppression of deviations such as second-drop-slow-phenomena 
and in-channel crosstalk. 

A QCM system comprising an AT-cut, plano-convex 
resonator with a diameter of 14 mm and a fundamental frequency 
of 6 MHz (QCMLab, Järfälla, Sweden) was mounted on the 
moveable stage, connected to a designated resonator/frequency 
counter circuit. The readout system was designed to have a 
frequency of 1 Hz. The frequency data was supplied to a custom 
program to be analyzed for the frequency shifts introduced by the 
droplet deposition.  

Results 

Crystal Current 
Single droplets of 50 pL nominal volume were applied to the 

crystal center at a repetition frequency of 0.05 Hz. Figure 1 shows 
the dependence of the apparent detection of a droplet as a function 
of time versus the crystal current supplied to the system. It was 
shown that low crystal currents resulted in fuzzy droplet detections 
with varying frequency shifts even though the same mass/volume 
was applied. The variance of the system, furthermore, did not 
allow for a correct detection of droplets. The variance of the 
detected signal was clearly related to the applied current, as this 
correlated to the acceleration of the crystal surface in contact with 
the fluid. It, therefore, modulated the amplitude of the shear wave 
at the top surface and did alter the conditions described by 
Equation (1). 

All of the experiments showed a similar initial detection 
phase, which was characterized by a fairly linear decay during the 
first 10 deposited droplets. Towards higher currents the detection 
stabilized, resulting in more reproducible measurements up to  
0.75 µA, which is the maximum current applicable in the system. 
Using this setting a stable measurement was established, showing a 
strong linear decay, followed by what appeared to be a resonance 
at a deposited volume of approximately 500 pL and a stable 
frequency shift up to 80 droplets before the trace became more 
noisy and decreased towards a zero frequency shift.  

Repeatability and Time-Dependent Behavior 
Figure 2 shows an overlay of 10 measurements using a crystal 

current of 0.75 µA and a repetition frequency of 0.1 Hz. The initial 
phase of the detection showed good reproducibility with a linear 
decay of the frequency shift with 5.78 Hz per droplet (cf. Figure 1 
(a)). Beyond this initial phase the course of the frequency shift 
deviated reproducibly from the expected behavior. While the 
increasing fluid volume available for dampening of the crystal 

motion as well as departure from the high sensitivity mass region 
in the center of the crystal, would suggest a decrease in the 

 
Figure 1: Influence of the crystal current on the consistency of the droplet 
detection 

frequency shift intensity, i.e. lower detected mass values, two 
subsequent local maxima were detected, which were reproducible 
for all the measurements. This first maximum was found at 
approximately     1 nL droplet volume and exhibited a rather low 
increase of the frequency shift value of 10 Hz. The second 
maximum was found at a deposited droplet volume of 5 nL and 
represents the peak of a continuous increase from 100 to 160 Hz 
without increasing the volume supplied from the printhead. 
Subsequently the detected mass linearly decreased towards zero 
and provided no further information. 

Altering the repetition frequency during the experiments 
yielded the graphs in Figure 3. The values were normalized to the 
signal of the first droplet applied to emphasize the changes. Low 
repetition frequencies showed a less steep reduction during the 
initial phase, indicating the spreading dynamics of the droplet 
being a driving force for the deviating characteristics. As the time 
between droplet depositions was increased, wetting phenomena 
allowed for further spreading of the droplet before deposition of 
the subsequent droplet. The larger area wetted by the previous 
droplets may give rise to a stronger dissipation of the kinetic 
energy of the impinging droplet and therefore reduce the 
advancement of the contact line. The location of the maxima 
appeared also to be influenced by the droplet application 
frequency. The number of droplets needed for the generation of a 
maximum was inversely proportional to the ejection frequency of 
the printhead and showed saturation towards 0.0125 Hz.  

The second maxima was absent in the experiments with 
repetition frequencies of 0.0125 and 0.025 Hz. 0.05 Hz showed a 
slight increase with higher noise towards at droplet counts higher 
than 100. 
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Figure 2: Repeatability of a QCM detection of 50 pL droplets ejected every     
10 seconds [nominal number 150 droplets, 10 repetitions]  -  inset: (a) 
repeatability of the measurements for the first 10 droplets; (b) time dependent 
signal for a single droplet detection) 

 
Figure 3: Influence of the repetition frequency on the frequency shift 
introduced by a 50 pL droplet 

As the clear dependency on the time between two subsequent 
droplet impacts was observed, the resulting effect may be 
attributed to the intermediate wetting of the crystal and, hence, the 
conformation of the resulting droplet. The lateral as well as the 
height conformation of the droplet may be of importance for the 
interpretation of the phenomena. König et al. [3] described the 
temporal evolution with respect to the complex frequency shift    
Δf +iΔГ and showed that the change in contact area may trigger 
changes in Δf/ΔГ and thereby time dependent frequency shifts. 
McKenna et al. [4] additionally attributed certain resonances as a 
result of interference of compressional waves resonating inside the 
droplet, with the height of the droplet affecting the constructive or 
destructive interference pattern. 

Conclusion 
The basic applicability of localized quartz crystal 

microbalance measurements for the assessment of droplet 
consistency in functional deposition was investigated. The very 
high relative measurement accuracy (cf. Figure 2 (b)) was shown 
to be available for volume monitoring. The absolute mass 
accuracy, however, could currently not be exploited due to the 
shear wave dissipation in the fluid and the resulting detection 
limits of the system. 

It was established that high crystal currents allow for 
reproducible measurements due to the increased shear wave 
amplitude, which counteracts the strong damping from the applied 

liquid. Repeatability was studied and found to be within ±10% for 
the first 50 droplets deposited.  

Multi-droplet measurement greater than 10 droplets was 
found not to be linear but time and volume dependent. While the 
repeatability study concedes the application due to a defined 
effect, precise reasons for this behavior were not yet fully 
understood. 
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