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Abstract 

Today’s printed electronic elements are formed by printing 
the active materials in the desired patterns, requiring that the 
active materials be formulated into a printable form.  We explore 
an alternative approach to printed electronics where the 
patterning is achieved by printing, but the active material is 
deposited via atomic layer deposition (ALD). We thus separate the 
ink-like requirements from the active materials requirements.   In 
this “patterned by printing” approach to printed electronics, a 
director material is printed that inhibits the deposition of the 
functional material.  The active material is globally applied but 
only deposits in the areas where the director is not present—and 
as such is patterned at the time of deposition.  In our work, the 
active materials are deposited by an atmospheric pressure, roll-
compatible spatial ALD (SALD) process. Details on the director 
materials and printing techniques are discussed, and results from 
thin film transistors (TFTs) will be presented.   

Introduction 
Common threads in printed electronics today are high 

materials usage and high throughput (low cost), high substrate 
latitude (electronics everywhere), and the use of digital patterning 
(low-volume manufacturing and custom designs).  Typical printed 
electronics efforts employ processes wherein the active layers of 
an electronic device are digitally printed.  Using additive printing 
processes for fabricating printed electronics requires that 
semiconductors, dielectrics, and electrode materials have ink-like 
as well as electronic properties. This need for active materials to be 
“printable” greatly restricts the materials available for use in the 
formation of printed electronics, and has to date limited device 
performance.   

The “patterned by printing” approach removes the ink-like 
constraint from the additive material, and in our case requires a 
single director ink formulation to build complete devices or 
circuits.  It also relaxes the constraints on the quality of printing 
required.  In additive printed systems, the active materials 
interfaces are formed in the printing steps and layer uniformity is 
critical.  As we will demonstrate, a relatively non-uniform printed 
director does not influence the ability of the director to direct and 
the active materials interfaces are formed via spatial atomic layer 
deposition (SALD), leading to low defect interfaces. 

There are three key elements in our “patterned by printing” 
approach: 1) spatial ALD (SALD), 2) director materials and 
mechanisms, and 3) printing methods.  In this paper we will walk 
through the important aspects of each element, and link them into a 
process flow for thin film transistors (TFTs).  New performance 
data from representative TFTs made using this methodology 
clearly show the potential to form high quality devices and 
ultimately circuits.  

 

Spatial Atomic Layer Deposition 
The majority of ALD reactors are enclosed systems used to 

expose a substrate to a succession of reactants, by introducing and 
then evacuating the precursor and inert gases. While this approach 
is very successful at producing high-quality films, there are 
limitations. First, it requires a chamber to allow control of 
precursor introduction and purging, and the chamber must 
therefore be larger than the substrate under consideration. Second, 
the ALD chamber rarely operates at steady state. Instead, a 
sophisticated valving operation is required, leading to equipment 
complexity and a constantly varying composition of precursors in 
the chamber. Third, the purging process generally takes 
significantly more time than the exposure, leading to relatively 
slow growth rates. 

An alternative to the above approach is to confine each of the 
reactive gases to particular spatial regions of a deposition head [1], 
[2] and allow relative movement of a substrate to accomplish the 
alternate exposures of the ALD cycle. The schematic of a spatial 
ALD system (Figure 1) shows a substrate and the localization of 
precursor and inert gases in channels. As the substrate moves, each 
point on the substrate sees the sequence of localized gases 
originating from the coating head. The actual sequence is very 
similar to that experienced in a chamber-based ALD system. As 
with chamber ALD, the success of the process requires that any 
gas phase mixture of the precursors be avoided. In the case of the 
SALD system, this means that the composition of the gas 
experienced at any point on the substrate must change sharply as 
the point is moved from one gas channel to another. Our system 
employs linear inlet and exhaust slots, and carefully designed 
pressure gradients to prevent gas mixing. The arrangement of gas 
channels on the surface of the coating head is shown in Figure 1, 
along with the desired localization of gases.  
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Figure 1. Schematic of SALD head, showing localized gas flows. Substrate 
oscillates over the different precursor and inert inlets to build up a film. 
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In operation, the substrate is allowed to approach the head 
until the pressure field resulting from the gas flow supports the 
substrate, much like a hockey puck on an air table. The closeness 
of the substrate to the head forces the gas emitted from an inlet slot 
to flow only to the adjacent exhaust slots, and additionally makes 
the effective chamber size very small, leading to high turnover 
rates for each channel and thus improved gas isolation. In typical 
deposition conditions, the entire channel volume is replaced in a 
few tenths of a millisecond. 

Our models and experiments indicate very good gas isolation, 
regardless of the speed at which the substrate travels over the head 
[2]. However, reaction times need to be fast enough so that nearly 
complete exposure will take place in the residence time of the 
substrate over a channel, and this provides the limit to how fast the 
system can operate at a given temperature.  

The high degree of gas isolation provided is essential not only 
for separating the ALD reactants, but also for isolating the ALD 
reaction system from the surrounding ambient. The result is that 
the SALD system is able to operate in open air without any 
confinement while the deposition region environment is perfectly 
controlled. This gives a substantial advantage in footprint and 
equipment complexity, as the deposition system can be smaller 
than the substrate and requires no chamber and no sequenced 
vacuum pumping. 

Director materials and mechanisms 
Selective deposition, while possible with CVD [3] and even 

physical vapor deposition by the use of masking oils [4], appears to 
be most useful in the ALD process.  Because of the low-energy 
nature of the ALD process, it is possible to apply inhibiting 
materials to a deposition surface that prevent subsequent ALD 
growth.  Thus, hard inorganic materials deposited by ALD can be 
patterned without the use of post-deposition photolithographic and 
etching steps. Typical printed electronics materials, such as organic 
semiconductors, can also be deposited with relatively simple 
patterning processes.  However, the quality of ALD-deposited 
semiconductors and dielectrics cannot be matched by organic 
materials.  Leveraging selective deposition with a “patterned by 
printing” use of inhibitors has the potential to distinguish ALD, 
and in particular, large-area ALD, from other inorganic deposition 
methods. 

The inhibition of ALD growth can be achieved by the use of 
self-assembled monolayers [5] (SAMs) as well as polymers [6,7].  
The inhibition by SAMs is likely due to removal of surface-
reactive sites by attachment of a chemically inert monolayer, 
although effects of monolayer chain length suggest that prevention 
of precursor diffusion is an important feature.  Polymer inhibition 
likely relies upon prevention of reactant diffusion.  This is 
evidenced by studies of mass uptake of reactant by polymer films 
on quartz crystal microbalances in ALD chambers [6].    While the 
prior work has demonstrated and explored the mechanisms of ALD 
selective deposition, the refinement of the process to a point where 
it can be used as a primary patterning method for large-area 
electronics has not been developed.  Practically, the SAMs method 
is difficult to pattern, while polymer solutions maybe easily 
formulated for printing. 

It is known that polymers such as poly(methyl methacrylate) 
(PMMA) can be very effective selective deposition inhibitors.[6]  

In our laboratory and using the spatial ALD system, we have 
demonstrated that very thin layers of PMMA inhibit the growth of 
ZnO.[8]  For a bare glass substrate, as expected, film growth 
occurs almost linearly with the number of ALD cycles. The 
presence of PMMA inhibits the growth, as evidenced by a period 
of no measurable ZnO growth during a number of ALD cycles.  
PMMA layers as thin as 9 Å (confirmed by ellipsometry and 
consistent with spin coating models) offer some inhibition while 
thicker layers, still only approximately 40 Å, inhibit enough to be 
useful for device patterning. [9] 

Generally, it is considered that nonpolar or inert polymers are 
required to perform the ALD inhibition, which limits useful 
polymers to ones such as PMMA that require organic solvents.  
Large-scale printed patterning operations can experience problems 
with the strong solvents found in PMMA.  We find that certain 
water-soluble polymers make excellent selective deposition 
inhibitors for the deposition of ZnO and related materials.  In 
particular, many polymers that do not contain low pKa moieties, 
such as polyvinyl alcohol and polyvinylpyrrolidone (PVP), enable 
excellent selective deposition. 

Like PMMA, thin layers of PVP can inhibit the SALD growth 
of inorganic materials useful for devices.  We have seen in the lab 
that that 50 Å of PVP is sufficient to inhibit more than a 1000 Å of 
ZnO (for example).  PVP is soluble in many solvents making it an 
excellent candidate for use as the director material in the 
“patterned by printing process.”  This versatility of PVP enables it 
to be formulated into inks that can be printed by a variety of 
methods. 

Printing approaches 
 Using hydrophilic polymers like PVP, inhibiting inks for 

printing can be formulated using water or simple alcohols, and 
subsequently patterned by inkjet or transfer printing techniques 
such as flexography.  Unlike additive printing for active materials, 
a single simple ink formula is sufficient to make complete devices 
because the different active layers are each inhibited by the same 
“ink” 

In our lab we have used both flexography and inkjet printing 
for printing our director materials. The director is printed as the 
inverted pattern (negative) of the desired final active material 
pattern.  In this methodology, steps that are difficult in standard 
semiconductor processing such as vias are easy to accomplish, as 
the insulator is simply not permitted to grow where the via is 
desired. 

We have found in the lab that as long as the thinnest portion 
of the coated pattern is above the minimum director thickness 
required to inhibit the desired active material film thickness, the 
uniformity of the director thickness is not important.  This loose 
uniformity requirement allows additional freedom in ink 
formulation as well as large tolerance in overall print quality.   

The optical micrograph in Figure 2 illustrates the quality of a 
typical director pattern. The pattern is that of the source-drain 
contacts for a planar thin film transistor (TFT).  The region 
between the two “T” structures defines the channel of the TFT.  In 
this instance the director material is PVP K-30 formulated in 
diacetone alcohol and printed with a Dimatix 2800 piezo inkjet 
printer. The Dimatix 2800 piezo inkjet printer has 16 nozzles 
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which print in a swath.  The ridges visible in Figure 2 are the 
overlap areas between printed swathes.   

It is critical that the inhibitor completely inhibits the growth 
of the conductor over the semiconductor in the channel to insure 
that the electrodes do not short. .  A close-up of the print quality in 
the channel area can be seen in Figure 3.  Typical transistors to-
date have been printed using 10 pL droplets, and a single row of 
drops is used to define the channel.  There is clear evidence of the 
“coffee-ring” effect in Figure 3, evidenced by the thicker edge, but 
such print artifacts in the director pattern still produce quality 
transistors. 

 

 
Figure 2.  Veeco Wyko optical profiler image of inkjet printed director pattern; 
the printed area shown is 2.4 mm x 1.8 mm. 

 
Figure 3.  A 3D representation of inkjet printed PVP director as measured by 
a Veeco Wyko optical profiler is shown in a. Graphs b. and c. are the cross-
sectional profiles within the boxes drawn in a.   

Figure 4 shows approximately 1000 Å of aluminum-doped 
zinc oxide (AZO), which was patterned by a printed director as in 
Figure 3.  There is a clear translation of the inhibitor pattern to the 
grown film, as seen by the scalloped edges in inset c. of Figure 4.  
We have found that this artifact has not limited our device 
performance; however in applications where a straight edge is 
required more care would be needed in patterning the director.  In 

contrast to the uniformity and film quality of the printed director, 
the AZO film is flat, with a relatively smooth surface and vertical 
edges along the pattern boundary.   

Although we have not discussed inhibitors printed by 
flexography in detail here, the same rules apply – namely that print 
artifacts and non-uniformities in the director material are tolerable 
as long as a minimum thickness is obtained.  We have found that 
inhibitor performance is dependent on the material and the layer 
thickness, not on the method of deposition. 

 
Figure 4.  A 3D representation of a directed AZO film as measured by a 
Veeco Wyko optical profiler is shown in a. Graphs b. and c. are the cross-
sectional profiles along the lines drawn in a.  

 “Patterned by printing” Devices 
“Patterned by printing” devices are formed by combining the 

three key elements discussed above.  An active material process 
block would be to clean the substrate, print the director pattern, 
deposit the active material via SALD, and then clean the substrate 
to remove the director pattern. The director may be removed using 
a number of methods including oxygen plasma or solvent wash.   

Recently we have formed TFTs wherein all device layers 
were deposited by SALD:  source / drain and gate were composed 
of aluminum doped zinc oxide (AZO) while the dielectric and 
semiconductor were Al2O3 and ZnO, respectively.  Prior to each 
deposition, an inhibiting pattern of polyvinylpyrrolidone (PVP) 
was applied using flexographic printing or inkjet printing.  Both 
printing methods yielded functional TFTs with mobilities of 2 
cm2/Vs or greater. Details on the flexographic devices can be 
found in Reference [9]. 

Table 1 outlines the inkjet process flow used for forming our 
bottom gate TFTs. Typical SALD depositions are carried out at 
200°C; lower and higher temperature depositions have been used 
and 100°C is roughly the lower limit for device quality film 
growth.    Residence times and gas flows are optimized for each 
material based on the precursors.  The total time for each SALD 
step, including loading and unloading the sample is less than 15 
minutes. Printing and substrate cleaning are relatively fast 
operations, in our experimental runs using 2.5” substrates, cleaning 
and printing are each on the order of 5 minutes. Thus complete 
devices can be fabricated in a couple of hours using only three 
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processing tools.  There is potential to design each of these 
processing tools for roll-2-roll operation, implying that not only is 
the “patterned by printing” approach simple but it should be 
scalable to large scale high-throughput manufacturing.  

Table 1: Typical process flow for a “patterned by printing” 
bottom gate TFT. 

 Process Equipment Material 
1 Clean O2 Plasma - 
2 Print gate pattern Inkjet Printer PVP k-30 
3 Deposit  conductor SALD system 1000 Å  AZO
4 Clean O2 Plasma - 
5 Print dielectric pattern Inkjet Printer PVP k-30 
6 Deposit dielectric SALD system 500 Å Al2O3 
7 Clean O2 Plasma - 
8 Print semiconductor 

pattern 
Inkjet Printer PVP k-30 

9 Deposit semiconductor SALD system 200 Å ZnO 
10 Clean O2 Plasma - 
11 Print source-drain pattern Inkjet Printer PVP k-30 
12 Deposit conductor SALD system 1000 Å AZO 

 
Figure 5 an optical image of a completed a bottom gate TFT 

made according to the process flow in Table 1 and its performance.  
Curves are shown for the transistor in the linear regime (Vd = 0.2 
V) and the associated gate leakage.  The device shown had a 
mobility of 5.6 cm2/V-s. This experiment had 84 devices; greater 
than 90% of the devices were functional with an average mobility 
of 7 cm2/V-s.  As can be seen from Figure 5, print artifacts can be 
tolerated in the “printed by patterning” approach.  These devices 
were formed on a silicon substrate and devices made on glass 
substrates have been found to have equivalent performance.  There 
is ongoing work in our lab to translate this process to various types 
of substrates including Kapton® and Teslin®.   
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Figure 5.  An optical microscopy image of a “patterned by printing” TFT and 
the corresponding performance curves for drain current (solid) and gate 
leakage (dashed).   

Conclusions  
In summary, we have discussed the important aspects of our 

“patterned by printing” approach to printed electronics.  This 
approach to printed electronics has a simple process flow with only 
three necessary pieces of equipment, implying a manufacturing 
process that would only require process control and understanding 
of three fundamental processes.  We have shown fully “patterned 
by printing” devices with performance rivaling that of devices 
made with standard semiconductor industry process.  This 
combination of quality devices, additive patterning, and simple 
processing steps leave us excited about the future of devices and 
circuits formed using “patterned by printing.”  
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