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Abstract 
A new method that makes possible a potential-profile 

measurement of an electrostatic latent image is proposed. The key 
technology is to detect a primary electron. When a surface 
potential is greater than acceleration voltage of the primary 
electron, the velocity becomes zero before the electron hits a 
sample. As a result, the primary electron reaches to a detector 
without reaching the sample. The potential distribution can be 
measured by detecting primary electrons while changing an 
applied voltage of a backside. This method is that the means of 
charging, exposing, and detecting are all incorporated in the same 
system, making real-time measurement possible.  

This system is being used to analyze the basis of an 
electrostatic latent image formed on a photoconductor. In order to 
confirm a phenomenon of reciprocity law failure, the latent-image 
depth was measured by changing the delay time when exposure 
was carried out a couple of times. As a result, the latent-image 
depth tends to be formed deep when the delay time becomes long. 

Introduction  
Recently, a demand for high-quality, color output from digital 

copying machines and laser printers has risen significantly 
prompting the development of achieving 1-dot reproducibility and 
stability. Under such circumstances, it is necessary to measure the 
electrostatic latent image with high-resolution on the order of 
microns. However, a spatial resolution of a commercial 
electrostatic voltmeter is on the order of millimeters at best. 

Some methods that use a head sensor, such as a cantilever, 
and detect an electrostatic attractive force and a dielectric current 
have been reported [1]. However, it is difficult to set them up in 
the allowed time because the head sensor must be moved closer to 
the sample. In addition, it is necessary to solve problems such as 
natural discharge, absorption, and absolute distance measurement.  
On the other hand, voltage contrast observations for conductors or 
insulators have been reported [2].  However, since resistance of an 
organic photoconductor (OPC) is not infinity, dark decay occurs, 
and the electric charge decreases with time. Measurements must be 
taken within a short time after the formation of the electrostatic 
latent image.  

We have proposed a measuring method of a latent-image 
diameter by detecting secondary electrons in NIP25 (2009) [3]. 
The significant feature of this method is that the means of 
charging, exposing, and detecting are all incorporated in the same 
system. This paper reports a new method for measuring a 
potential-profile of an electrostatic latent image on a 
photoconductor by detecting primary electrons [4]. In addition, 
this paper reports a mechanism analysis of reciprocity law failure 
using this measuring system. 

Measurement Principle 

Primary electron detecting method  
The measurement principle is shown in Fig. 1. When a 

charged photoconductor is exposed to light, electron-hole pairs are 
generated at a charge generation layer (CGL). Holes move through 
a charge transport layer (CTL), combine with electrons on the 
photoconductor surface, and disappear. This gives rise to a charge 
distribution on the photoconductor surface, resulting in the 
formation of an electrostatic latent image.  

This system is configured to apply a voltage to a backside of 
the photoconductor.  The velocity of a primary electron gradually 
decreases due to influence of the potential of the sample surface. 
When the surface potential is greater than acceleration voltage of 
the primary electron, the velocity becomes zero before the electron 
hits the sample. As a result, the primary electron reaches to a 
detector without reaching the sample. This measuring method is 
called a “primary electron detecting method”. 

 

 
Figure 1. Primary electron detecting method 

Physical model of potential energy is shown in Fig. 2. By 
denoting accelerating voltage as Vacc ( < 0 ), electron mass as m 
and electron charge as e, initial velocity v0 of a primary electron 
can therefore be given by 

Vacc
m
ev 2

0 = , （1） 

 
in terms of classical mechanics. Landing velocity vL when arriving 
at a sample surface with potential Vp can be expressed by 
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VpVacc
m
ev L −=

2 . （2） 

 
In FIG. 2(a), when |Vacc| > |Vp|, the electron can reach the 

sample at a decreased speed. Therefore, the detector cannot collect 
the primary electron. In FIG. 2(b), when |Vacc| < |Vp|, the speed 
of the primary electron gradually decreases due to influence of the 
potential of the sample, and the speed becomes zero before the 
electron hits the sample. As a result, the electron proceeds to the 
opposite direction and then reaches the detector. In vacuum 
having no air resistance, the law of energy preservation is 
completely established. The potential of a boundary domain agrees 
with Vacc as shown in 

),( yxVpVacc = . (3) 
 
Therefore, the state of the potential distribution can be 

measured by detecting primary electrons. 

Measuring method of latent image profile 
When a backside voltage is Vsub and a surface-potential with 

Vsub = 0 is Vs(x, y) , Vp(x, y) is expressed by 

VsubyxVsyxVp += ),(),( .   (4) 
 
From equations (3) and (4), a threshold potential Vth is defined as 

VsubVaccVth −= .    (5) 
 
The boundary domain denotes a potential contour line of Vth 

value. Therefore, the surface-potential can be obtained by 
measuring the latent image profile by scanning the sample surface 
with electrons while changing the applied voltage Vsub. The latent 
image profile is called Vth distribution. Vth(x, y) becomes 
approximately equal to Vs(x, y) on condition that Vth(x, y) has a 
smooth charge distribution.  

Surface-charge density Q(x, y) can be derived according to 
the procedure of solving the inverse problem from the Vth 
distribution as shown in Fig.4. As a result, the surface-potential Vs 
(x, y) can be measured in higher accuracy. 

Electrostatic Latent Image Measuring System 
The basic layout of the developed measuring system is shown 

in Fig. 5. The vacuum chamber includes an electron optical system 
for guiding the electrons emitted from an electron gun to the 
sample, a means of forming a latent image to reproduce actual 
electrophotographic conditions, a means of detection, a means of 
erasing, and a holder which can apply a voltage to a backside of 
the sample surface. 

The means of primary electron detector (PED) is configured 
to efficiently guide the secondary electrons to a scintillator. A light 
emitting diode (LED) erases residual charge on OPC surface. 

One factor in achieving latent image measurement was 
devising a method that would enable observations to be made 
within a very short time following the formation of the latent 
image.  

 
Figure 2. Physical model of potential energy: conditions are (a)|Vacc| > |Vp| 
and (b)|Vacc| < |Vp| 

 
Figure 3. Contrast image 

 
Figure 4. Flowchart of process of measuring potential distribution 
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The significant feature of this method is that the means of 
charging, exposing, and detecting are all incorporated in the 
vacuum system, making real-time measurement possible.  

Since this method cannot be used in a vacuum, a charging 
system based on electron-beam irradiation is adopted. Secondary 
electrons are emitted when irradiating a dielectric targeted for 
measurement. This system purposely makes use of this charge-up 
phenomenon, which should be generally avoided. By intentionally 
setting the accelerating voltage greater than no-charging condition, 
the electrons accumulate in the photoconductor causing the sample 
to charge up. As a result, the photoconductor can be negatively 
and uniformly charged [5]. 

An exposure optical system can form a beam profile at a 
desired beam spot diameter on the photoconductor.  A light flux 
emitted from a laser diode (LD) is converted into a parallel laser 
beam by a collimator lens. Next, the laser beam passes through an 
aperture, a focusing lens and a reflecting mirror, and condenses on 
the photoconductor as the laser beam spot.  

 
Figure 5. Electrostatic Latent Image Measuring System 

Experimental Results 
Measurement results of electrostatic latent image are shown 

in Fig. 6. The sample was an OPC with a film thickness of 30 μm. 
Charging potential was –800 V. The exposure light source was an 
LD with a wavelength of 655 nm. The beam-spot diameter was 57 
μm horizontal and 83 μm vertical. 

Figures 6(a) and 6(b) show the contrast images for static 
exposure with applied voltages of –1230 V and –1200 V, 
respectively. These results show that differences in latent-image 
diameters due to different applied voltages can be clearly 
identified. The latent-image profile can be measured with potential 
resolution of 2 V.   

Next, Fig. 6(c) shows Vth distribution of horizontal latent-
image. This result demonstrates that the proposed method can 
measure the latent-image profile with high potential spatial 
resolution. Finally, Fig. 6(d) shows the measurement results of the 
surface potential obtained by analyzing Vth distribution. 

 

 
Figure 6. Measurement results: (a) image with Vsub:-1230V ,(b) image with 
Vsub:-1200V, (c)Vth distribution of horizontal latent-image and (d)surface 
potential 

Mechanism Analysis of reciprocity law failure 
This system is being used to analyze the basis of the 

electrostatic latent image formed on a photoconductor. The 
photoconductor has the occurrence of a phenomenon of reciprocity 
law failure that even when the total exposure-energy density given 
to the photoconductor is the equal condition, a latent-image depth 
is different. 

In order to confirm the mechanism, the latent-image depth 
was measured by changing the delay time when exposure is 
carried out a couple of times.  Figure 7 shows a light-emitting 
pattern for double-pulse exposure including first exposure and 
second exposure after a delay time ΔT. That is, the same area was 
exposed twice. All other conditions except ΔT are kept constant. 
Figure 8 shows the measuring results of surface-potential 
distribution when the delay times ΔT are 1 μs, 100 μs and 10 ms. 
As a result, the latent-image depth tends to be formed deep when 
the delay time becomes long.  

Figure 9 shows the measuring results of the latent-image 
depth when the delay times ΔT change from 400 ns to 10 ms. 
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Figure 7. Light-emitting pattern for double pulse exposure 

 
Figure 8. Measurements of surface potential with delay time ΔT of double 
pulse exposure 

 
Figure 9. Relationship between delay time and latent-image depth 

 
Figure 10. Mechanism of reciprocity law failure for explaining relation between 
1st carrier position and 2nd exposure time 

As described above, when the delay time becomes long, the 
latent-image potential tends to be formed deep, and changes in the 
S-shaped curve along the delay time, as a whole. Here, a latent-
image depth is defined as peak-to-valley of latent image profile to 
a charging potential.  

The phenomenon indicates that the latent-image depth is 
relevant to first generated carrier position at the second exposure 
time as shown in Fig. 10. The first generated carriers have the 
action which weakens electric field in CGL. The further the first 
generated carriers are away from CGL, the stronger an electric 
field in CGL becomes. Therefore, since the quantum efficiency 
become higher, second generated carriers increase. When the delay 
time is greater than the time that the first careers arrive at the 
surface, the generation amount of carriers do not change. As a 
result, the latent-image depth becomes constant. In this way, the 
mechanism of reciprocity law failure has come to light. 

Conclusions 
A new method that makes possible a potential-profile 

measurement of an electrostatic latent image is proposed. The key 
technology is to detect a primary electron that is reversed before 
reaching a sample surface. The latent-image profile can be 
measured with potential resolution of 2 V and with spatial 
resolution on the order of microns.  

In order to analyze the mechanism of reciprocity law failure, 
the latent-image depth was measured by changing the delay time 
when exposure is carried out a couple of times. As a result, the 
latent-image depth tends to be formed deep when the delay time 
becomes long. The phenomenon indicates that the latent-image 
depth time is relevant to a carrier position generated at the first 
exposure in the second exposure. The system can be used to 
analyze the basic characteristics of an electrostatic latent image 
formed on a photoconductor. 
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