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Abstract 

The mechanism of paper curl is examined using an 
experimental apparatus that presses a sheet of paper between two 
flat-heated plates. When both sides of the paper are heated at 
different temperatures, the moisture content of the low-
temperature side becomes higher than that of the high-temperature 
side. A difference in the moisture content causes a shrinkage 
difference between both sides of the paper, generating paper curl. 
An analysis of the paper curl amount is then carried out by 
calculation of moisture transport that considers the capillary flow 
and water evaporation. The amount of paper curl is calculated as 
a function of heating time using a bi-metal model. The theoretical 
and experimental results are in good agreement. 

Introduction  
Paper curl generated by the fusing process of 

electrophotographic printers and copiers is a paper handling 
problem. A fuser consists of a heating roller that binds toner 
particles to a sheet of paper and a pressure roller that presses the 
paper against the heating roller. The temperature difference 
between these two rollers causes the paper to curl towards the low-
temperature side. The objectives of this study are to investigate the 
mechanism of paper curl and to obtain a prediction method of the 
curl amount. 

An experimental study on paper curl has been carried out [1], 
but the mechanism is still not well understood. This is because the 
apparatus used in the study is composed of two rollers to heat a 
sheet of paper, and these rollers cannot heat both sides of the paper 
accurately at the chosen temperatures. Furthermore, the shape of 
the nip region between the two rollers varies the shape of the paper. 

In this study, an experimental apparatus consisting of two 
heated flat plates is used to press a sheet of paper at controlled 
temperature and heating time. It also allows the absolute humidity 
of both sides of the heated paper to be measured. The absolute 
humidity of the surface of the paper correlates with the moisture 
content. It is found that a temperature gradient within the paper 
leads to moisture transfer from the high-temperature side to the 
low-temperature side. After heating, the low-temperature side 
loses more moisture than the high-temperature side, and shrinks 
more in size. The paper subsequently curls toward the low-
temperature side. 

Next, a moisture transport calculation method that considers 
the capillary flow and water evaporation is proposed to predict the 
amount of paper curl. The calculation is a one-dimensional model 
of the direction of paper thickness, and it assumes a sheet of paper 
as a uniform porous medium. The moisture content distribution 
along the paper thickness is calculated when both sides of the 
paper are heated at different temperatures, and it shows moisture 

transport from the high-temperature side to the low-temperature 
side.  

Another experiment is also carried out to measure the 
dependence of paper shrinkage on the moisture content and 
temperature. A sheet of paper is assumed to be composed of two 
layers, and the shrinkage of each layer is calculated from the 
results obtained from the analysis and experiment. The amount of 
paper curl is calculated as a function of heating time using a bi-
metal model. 

Curl Mechanism 
Fig. 1 shows the experimental apparatus used to analyze 

paper curl. It has two heated flat plates with controlled temperature 
and pressing time. The test paper width is 20 mm and the heating 
length is 100 mm. In this apparatus, the paper is unaffected by the 
nip region and the bending of transportation guides, and thus the 
generated curl is caused by only heating. Two humidity sensors 
are arranged adjacent to the sides of the paper. After heating, the 
sensors move to the heated region to measure the absolute 
humidity of surfaces of the paper. 

Curl amount 
 Fig. 2 shows the relationship between the temperature 

difference and curl curvature. One side of the paper is heated to 
80 °C, and the heating temperature of the other side is varied from 
60 to 180 °C at 20 °C intervals. Prior to the experiments, the paper 
is placed in two environments with different humidities. 

The curl curvature increases with increasing temperature 
difference. In addition, it is found that the paper placed in the 
environment with high humidity generates a larger curvature than 
the one placed in the environment with low humidity. The 
experimental results correspond to observations of the paper curl 
amount in printers and copiers. 

Humidity measurements of paper surfaces 
Nonomura and co-workers showed that the curl curvatures 

correlate with the amount of evaporation. Accordingly, we 
measure the absolute humidity of the paper surface. The sensor 
was developed in-house and it can measure the humidity at a 
sampling frequency of approximately 100 Hz.  

Fig. 3 shows the changes in absolute humidity of the paper 
surface. Prior to the experiment, a sheet of paper with a 0.24 mm 
thickness is placed in an environment with a humidity of 75% RH 
for approximately a day. The heating time is from 2.9 s to 4.9 s, 
and the sensor moving time is from 5.0 s to 5.2 s. The two solid 
lines shown in Fig. 3 are cases when the paper surfaces are heated 
at different temperatures. The absolute humidity of the low-
temperature side heated at 80 °C is higher than that of the high-

NIP 28 and Digital Fabrication 2012 289



 

 

temperature side heated to 160 °C. The two dotted lines are cases 
when the paper surfaces are heated at the same temperature of 
160 °C. The absolute humidity of the same temperature heating is 
higher than the case of high temperature heating and is lower than 
the case of low temperature heating when the paper is heated at 
different temperatures. This result suggests that the moisture 
content of the low-temperature side increases, that is, the moisture 
content of the high-temperature side is transferred to the low-
temperature side within the paper, since moisture is not supplied to 
the paper during and after heating. 

 Paper shrinkage after heating 
If a high moisture content causes a high shrinkage ratio, it 

will be clear that an increase in the moisture content causes the 
paper to curl towards the low-temperature side. Thus, we measure 
the relationship between the moisture content and the shrinkage 
after heating. Fig. 4 shows the equipment used to measure the 
paper shrinkage after heating. A slide guide and a displacement 
sensor are added to the apparatus shown in Fig. 1. The lower side 
of the paper is held by the slide guide which can move freely 
depending on the paper length. The slide guide has a target for 
measuring the displacement sensor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Experimental apparatus for analyzing paper curl 
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Figure 2. Relationship between the temperature difference of the heating 
plates and the curl curvature at two humidity levels. 
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Figure 3. Absolute humidity of the paper surfaces after heating 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. Equipment for measuring paper shrinkage 

Fig. 5 shows the measured paper shrinkage as a function of 
time after heating. The paper thickness is 0.24 mm, the heating 
temperature is 160 °C, and the heating time is 2.0 s. Three sheets 
of papers with different moisture contents are used. 

The amount of paper shrinkage increases with time after 
heating, and it is clear that a high moisture content causes a high 
shrinkage ratio. 
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Figure 5. Paper shrinkage at various moisture contents after heating 

As a result, we can conclude that the mechanism of the paper 
curl is as follows. Firstly, the moisture within the paper transfers 
from the high-temperature side to the low-temperature side during 
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heating, resulting in increasing moisture content of the low-
temperature side. Secondly, much of the moisture evaporates from 
the low-temperature side, and thus its shrinkage ratio is higher than 
that of the high-temperature side. This causes the paper to curl 
towards the low-temperature side. 

Prediction of Curl Amount 
Moisture transfer within the paper causes paper curl when the 

paper is heated at different temperatures. We can predict the 
amount of paper curl by calculating the distribution of moisture 
content within the paper. Accordingly, we attempt to develop a 
curl prediction method. 

Analysis of moisture transport within paper 
A numerical simulation that calculates the moisture transfer 

within the paper has already been investigated by Bandyopadhyay 
et al. [2]. The simulation considers the moisture transfer as water 
vapor transfer, and the moisture is calculated from the moisture 
isotherm. In this study, we proposed a calculation method that the 
moisture transfers as liquid water through the thickness direction. 
The calculation also considers water evaporation during heating. 
Equations are solved using the finite volume method. 

The uniformity of the water flow can be expressed as: 
 
 
                                                                                         (1) 
 
where, 
ρl : Density [kg/m3] (Water) 
ε: Porosity 
S : Moisture content 
t : Transfer time [s] 
Fl : Flow [kg/m2s] (Water) 
x : Distance [m] 
 
The energy within the paper can be expressed as: 
 
 
                                                                                         (2) 
 
where, 
cpT : Specific heat at a constant pressure [J/(kgK)] (Paper) 
cpl : Specific heat at a constant pressure [J/(kgK)] (Water) 
T : Temperature [°C] 
λT : Thermal conductivity [W/(mK)] (Paper) 
L : Latent heat of vaporization [J/kg] 
ρT : Density [kg/m3] (Paper) 
 
When the control volume reaches 100 °C, it is assumed that 

the moisture of the control volume evaporates and the paper loses 
latent heat, resulting in 0% moisture content. 

The water flow given by Darcy's law and Fick's law is as 
follows. 

 
 
                                                                                         (3) 
 
where, 
K : Permeability [m2]  

Krl : Relative permeability (Water) 
D : Moisture diffusion coefficient [m2/s] 
μl : Viscosity coefficient [sPa] (Water) 
pl : Saturation vapor pressure [Pa] 
 
Fig. 6 shows the relationship between the distance from the 

surface of the high-temperature side and the moisture content for 
various heating times. The initial moisture content of the paper is 
10%, and the paper thickness is 0.24 mm. Meanwhile, the heating 
temperatures are 80 and 160 °C and the heating time is 2.0 s.  

As the heating time increases, the peak region of the moisture 
content moves from the high-temperature side to the low-
temperature side. The result of the calculation clearly indicates 
occurrence of moisture transport within paper. The moisture 
content of the high temperature-side becomes 0% based on our 
assumption that the moisture content becomes 0% when the paper 
temperature reaches 100 °C. 
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Figure 6.  Moisture content distribution within the paper for various heating 
times. 

Paper shrinkage at various heating temperatures 
Paper shrinkage is affected by the moisture content and 

heating temperature. Thus, it is necessary to obtain the relationship 
between the amount of paper shrinkage and heating temperature. 
We measured the amount of paper shrinkage at various heating 
temperatures using the apparatus shown in Fig. 4. 

Fig. 7 shows the relationship between the amount of paper 
shrinkage and moisture content at several heating temperatures. A 
sheet of paper with 0.24 mm thickness is placed in three 
environments with different humidities for about a day prior to the 
experiment, and thus the three papers have different moisture 
contents. Both sides of the paper are heated at the same 
temperature for 2.0 s. The amount of shrinkage is measured 
immediately after heating is done, which is also the time at which 
the curl growth stops.  

The amount of paper shrinkage is in proportional to the 
moisture content, and increases with the heating temperature. 

Calculation of curl amount 
The curl curvature is calculated by the bi-metal model [3]. A 

sheet of paper is assumed to have a high-temperature side and a 
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low-temperature side. The average moisture contents and the 
average temperatures of the sides are calculated. 

Fig. 8 shows the relationship between the heating time and 
moisture content of each side. As the heating time become longer, 
the moisture content increases in the low-temperature side and 
decreases in the high-temperature side. The heating time of the 
paper with a high moisture content becomes longer as it thickness 
increases. 
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Figure 7. Relationship between the amount of paper shrinkage and moisture 
content at various heating temperatures 
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Figure 8. Relationship between the heating time and moisture content at 
various thicknesses. 

The amount of shrinkage of the two sides is calculated by the 
first-order approximation obtained from Fig. 7. When the 
temperature lies between two examined temperatures, the formula 
is found by collinear approximation of two experimental formulas. 
The shrinkage of each side is calculated by the formula.  

The strain of the heated paper, εp, can be calculated as follows. 
 
                                                                                        (4) 
 
where, 
Sh : Shrinkage  (high-temperature side) 
Sl : Shrinkage  (low-temperature side) 
Lh : Heating length  (Paper). 
The curl curvature R can be expressed as follows. 

 
                                                                                      (5) 
  
where, 
tp : Thickness  (Paper) 
 
Fig. 9 shows the curvature transition of the heated paper. The 

solid and dotted lines are results obtained by calculations and the 
symbols are those obtained experimentally. 

An increase in heating time causes an increase in curl 
curvature, but long heating time decreases the curl curvature. This 
is because long heating time causes evaporation of moisture, and 
thus less shrinkage after heating. The curvature of a sheet of thin 
paper is larger than that of thick paper. This is predictable from eq. 
(5). In the region of short heating time, the curvatures obtained by 
calculations are larger than those obtained experimentally, 
particularly for the thin paper. However, the maximum curl 
curvature obtained by calculations corresponds with that obtained 
experimentally, and the tendency of the curl curvature transition 
influenced by the heating time and paper thickness is in good 
agreement. 

The error in the region of short heating time is due to heating 
resistance which exists between the heating plates and the paper 
surfaces. 
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Figure 9.  Curvature transition of heated papers with various thicknesses 

Conclusions 
Paper curl is observed when both sides of a sheet of paper are 

heated at different temperatures. This is because the moisture 
content of the low-temperature side becomes higher than that of 
the high-temperature side due to moisture transport from the 
high-temperature side to the low-temperature side. To predict the 
curl amount, a moisture transport calculation method that 
considers the capillary flow and water evaporation is carried out, 
and the amount of paper curl is calculated as a function of heating 
time using a bi-metal model. The theoretical and experimental 
results are in good agreement. 
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