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Abstract 

The life cycle of print starts with paper choices – specifying 
environmentally preferable paper products can reduce the effect 
that printing has on the planet. Over the past two centuries, wood 
is the primary raw material in paper manufacturing. However, 
wood-based paper carries a significant “ecological shadow” of 
energy consumption, bleaching chemicals, and water used in its 
production. In its 2010 report, United Nations Environment 
Program (UNEP) identified pulp and paper industry as one of the 
largest direct contributors to human toxicity. The substances from 
paper and paperboard mills that contribute most to human toxicity 
impact are mercury (II) ion, beryllium, and hydrogen fluoride. 
Motivated by legislation, consumer pressure, and the desire to 
become more efficient, the pulp and paper industry in the United 
States has invested in new technologies and processes that reduce 
its environmental impact. Tree-free fiber used in production is one 
way to minimize or eliminate the environmental impacts. This 
paper studied sustainable development and use of tree-free copy 
paper for the laser printer. The color reproduction capability and 
process capability of tree-free paper were evaluated in terms of 
optical density, print contrast, and color gamut. 

Introduction  
Tree-Free Paper is made without the use of tree fiber. There 

are a variety of alternative tree-free fibers that can be sourced to 
make paper and reduce the demand on forests. Basically, tree-free 
paper can be divided into two main categories: organic tree-free 
paper and nonorganic tree-free paper1, 2, 3, 4. Organic tree-free 
paper uses fibers derived from plant sources such as residues from 
agricultural crops, or plants grown specifically for papermaking. 
Nonorganic tree-free paper is usually made of plastic polymers or 
minerals. 

Tree-free fibers have advantages of producing paper with 
fewer chemicals, less energy, and less water than wood, offering 
farmers alternative crop options, promoting biodiversity by 
relieving pressures of deforestation, and taking advantage of 
readily available and underused fibers. However, the development 
of these materials for widespread consumer use has not yet 
occurred1,5. So far, the applications of tree-free paper are focused 
on stationery and office use. Several kenaf and hemp products 
mixed with recycled paper fibers and tree-free papers 
manufactured from agricultural residues (such as coffee, mango, 
lemon, and banana) are used to produce quality stationery, which 
add different elements to design. These products have made it to 
market, but none have been a big success so far. Sugar cane 
bagasse, on the other hand, has made some inroads in the North 
American office paper market. It biodegrades faster than wood-
based paper, and can be recycled with paper made from trees.  

 

Experimental 
In order to study the color reproduction and process capability 

of tree-free copy paper, three commercially available tree-free 
papers- sugarcane copy paper A, B, and C were selected and 
tested, with a wood-based copy paper as reference. Table 1 shows 
characteristics of tested tree-free copy papers. Like wood-based 
copy paper, tree-free copy papers use optical brightener agent 
(OBA) to bring up the desired brightness. 

Table 1: characteristics of tested tree-free copy papers 
Paper Paper 

Weight Brightness OBA Paper White 
L* a* b* 

Wood-based 20# 92 Y 95.53 1.94 -6.54 
Sugarcane A 20# 93 Y 92.64 4.3 -10.05 
Sugarcane B 22# 92 Y 93.17 3.95 -10.25 
Sugarcane C 20# 92 Y 93.94 2.25 -7.46 

 
The color reproduction capability of tree-free paper was 

evaluated in terms of optical density, print contrast and color 
gamut. A Xerox DocuColor 250 laser printer with toner-based inks 
(profiled as a CMYK device) was used in the study. Fifty samples 
of each substrate were collected and measured with an X-Rite i1iO 
spectrophotometer. ICC profiles were generated for the digital 
printers by using ProfileMaker 5.0.10. ICC profiles were then 
loaded into CHROMiX ColorThink Pro 3 software and the gamut 
volumes of the ICC profiles were determined. The optical densities 
and print contrast of tested tree-free papers were measured using 
an X-Rite 530 SpectroDensitometer. 

 The color reproduction consistency and capability of tree-free 
papers were discussed. One of indices used to measures process 
capability is Cp index. It is defined as the ratio of the designated 
specification range to the individual paper type process range, for 
optical density, print contrast, and color gamut parameters. Cp 
index is calculated as (upper specification limit - lower 
specification limit)/(6*Sigma). In other words, this ratio expresses 
the proportion of the range of the normal curve for each paper type 
that falls within that specification limits. For this study, a relative 
specification range was determined based on data for the selected 
paper types and used to calculate the Cp indices, as described 
below. 

Color-related Attributes 
Table 2 lists color-related attributes for the wood-based and 

sugarcane paper samples from the laser printer. Color density and 
print contrast values are shown for yellow (Y), magenta (M), cyan 
(C), and black (K). The average optical density measurements of 
tested tree-free copy paper are lower than those of wood-based 
copy paper. Although the wood-based copy paper yielded higher 
average optical densities, it tended to have larger color 
reproduction variability. The wood-based copy paper had higher 
average print contrast, with the exception of black. The sugarcane 
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C copy paper had lower print contrast with larger variability. It 
also shows that the wood-based copy paper produced a wider color 
gamut with smaller color reproduction variability, while sugarcane 
B copy paper having larger color reproduction variability.  

Table 2: Color-related attributes of tested copy papers 
 Wood-based Sugarcane A  Sugarcane B Sugarcane C 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Optical 
Density 

Y 0.85 0.02 0.84 0.01 0.84 0.01 0.82 0.02
M 1.10 0.02 1.06 0.02 1.08 0.02 1.05 0.02
C 1.22 0.03 1.17 0.02 1.20 0.02 1.16 0.02
K 1.61 0.03 1.58 0.03 1.60 0.04 1.58 0.06

Print 
Contrast 

Y 19.09 2.28 18.29 1.56 18.69 1.53 16.48 2.51
M 32.11 2.38 30.57 1.67 30.97 2.29 29.04 1.95
C 25.25 1.70 24.29 1.11 23.54 1.30 22.42 1.69
K 39.69 1.86 41.13 1.23 40.91 1.89 40.47 2.41

Color Gamut 336,358 3,712 312,351 3,414 308,103 10,248 312,096 5,365
Note: S.D. represents Standard Deviation (Sigma). 

 
Figure 1 illustrates the color gamut comparison for the wood-

based and sugarcane copy papers. Note the black projection line 
represents the color gamut of the wood-based paper reference. The 
color gamut of wood-based copy paper is larger, especially in the 
yellow regions. 

 

 
(a) Sugarcane A 
(true   
     color) v.s. wood-
based  
     (wireframe) 

(b) Sugarcane B 
(true   
     color) v.s. wood-
based  
     (wireframe)

(c) Sugarcane C 
(true   
     color) v.s. wood-
based  
     (wireframe)

 Figure 1: Color gamut comparison for the copy paper 

Microscope images of tested copy papers (black line) are 
shown in Figure 2, at 40X magnifications. It shows that wood-
based copy paper tended to produce a smoother, sharper edge. 

 

 
(a) Wood-based copy paper 

 
(b) Sugarcane A copy paper 

 
 

 
(c) Sugarcane B copy paper 

 
(d) Sugarcane C copy paper 

Figure 2: Microscope images (@40X magnification) 

One-way ANOVA Analysis 
One-way Analysis of Variance (ANOVA) statistical 

procedure was employed to determine whether the differences in 
optical density, print contrast, and color gamut of tested copy 
paper were significant. The significant level (α) was set at 0.05 for 
all tests. Table 3 to Table 6 present One-way ANOVA tests on the 
optical density difference among the tested copy papers for yellow, 
magenta, cyan, and black, respectively. It shows that the 
significant value of p is 0.000 < 0.05 (α) for observed optical 
densities yellow, magenta, and cyan (with p = 0.001 for black), 
that is, at least one pair of the mean optical density values is 
significantly different at 0.05 levels. The 95% confidence intervals 
of measurements are also exhibited in the lower part of tables. It 
shows that Sugarcane B copy paper and wood-based copy paper 
have similar optical density values for yellow (as their 95% 
confidence intervals of measurements are overlap with each other). 
Sugarcane A and C copy papers have similar optical density values 
for black. 

Table 3: One-way ANOVA test on the optical density of yellow 
Source DF SS MS F P 
Factor 3 0.016390 0.005463 25.83 0.000 
Error 196 0.041450 0.000211   
Total 199 0.057840    
                                     Individual 95% CIs For Mean Based on Pooled StDev 
Level                N     Mean    StDev       -------+---------+---------+---------+-- 
Wood-based  50  0.84600  0.01552                                           (-----*----) 
Sugarcane A  50  0.83600  0.01400                            (----*----) 
Sugarcane B  50  0.84320  0.01115                                        (----*----) 
Sugarcane C  50  0.82260  0.01688   (----*----) 

                                                  -------+---------+---------+---------+-- 
                                                       0.8240    0.8320    0.8400    0.8480

Table 4: One-way ANOVA test on the optical density of magenta 
Source DF SS MS F P 
Factor 3 0.058212 0.019404 43.41 0.000 
Error 196 0.087620 0.000447   
Total 199 0.145832    
                                     Individual 95% CIs For Mean Based on Pooled StDev 
Level                N    Mean   StDev        ---+---------+---------+---------+------ 
Wood-based  50  1.0980  0.0238                                                 (---*---) 
Sugarcane A  50  1.0644  0.0206                    (---*---) 
Sugarcane B  50  1.0770  0.0221                               (---*---) 
Sugarcane C  50  1.0518  0.0176       (---*---) 

                                                  ---+---------+---------+---------+------ 
                                                   1.050     1.065     1.080     1.095 
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Table 5: One-way ANOVA test on the optical density of cyan 
Source DF SS MS F P 
Factor 3 0.089698 0.029899 55.15 0.000 
Error 196 0.106252 0.000542   
Total 199 0.195950    
                                     Individual 95% CIs For Mean Based on Pooled StDev 
Level                N    Mean   StDev        --+---------+---------+---------+------- 
Wood-based  50  1.2160  0.0280                                           (--*--) 
Sugarcane A  50  1.1738  0.0223                 (--*--) 
Sugarcane B  50  1.1986  0.0170                                (--*---) 
Sugarcane C  50  1.1616  0.0244        (--*--) 

                                                  --+---------+---------+---------+------- 
                                                  1.160     1.180     1.200     1.220 

Table 6: One-way ANOVA test on the optical density of black 
Source DF SS MS F P 
Factor 3 0.02691 0.00897 5.39 0.001 
Error 196 0.32598 0.00166   
Total 199 0.35289    
                                     Individual 95% CIs For Mean Based on Pooled StDev 
Level                N    Mean   StDev     ----+---------+---------+---------+----- 
Wood-based  50  1.6084  0.0377                              (------*-------) 
Sugarcane A  50  1.5798  0.0277     (------*-------) 
Sugarcane B  50  1.5980  0.0348                     (------*-------) 
Sugarcane C  50  1.5828  0.0570       (------*-------) 

                                               ----+---------+---------+---------+----- 
                                                1.575     1.590     1.605     1.620 

Tables 7, 8, 9 and 10 display One-way ANOVA tests on the 
print contrast difference among the tested copy papers. It shows 
that the significant value of p is 0.000 < 0.05 (α) for observed print 
contrast yellow, magenta, and cyan (with p = 0.001 for black), in 
other words, at least one pair of the mean print contrast values is 
significantly different at 0.05 levels. According to 95% confidence 
intervals of measurements, wood-based and sugarcane A & B copy 
papers have similar print contrast values for yellow. The average 
print contrast value of sugarcane A copy paper is close to that of 
sugarcane B copy paper. It also shows that sugarcane copy papers 
have similar print contrast values for black. 

Table 7: One-way ANOVA test on the print contrast of yellow 
Source DF SS MS F P 
Factor 3 198.25 66.08 16.27 0.000 
Error 196 795.85 4.06   
Total 199 994.10    
                                     Individual 95% CIs For Mean Based on Pooled StDev 
Level                N    Mean  StDev     -+---------+---------+---------+-------- 
Wood-based  50  19.087  2.276                                         (-----*----) 
Sugarcane A  50  18.285  1.563                              (-----*----) 
Sugarcane B  50  18.690  1.526                                   (-----*-----) 
Sugarcane C  50  16.483  2.508      (-----*----) 

                                              -+---------+---------+---------+-------- 
                                              16.0      17.0      18.0      19.0 

Table 8: One-way ANOVA test on the print contrast of magenta 
Source DF SS MS F P 
Factor 3 241.61 80.54 18.38 0.000 
Error 196 858.65 4.38   
Total 199 1100.26    
                                     Individual 95% CIs For Mean Based on Pooled StDev 
Level                N    Mean  StDev       ---+---------+---------+---------+------ 
Wood-based  50  32.106  2.383                                          (----*---) 
Sugarcane A  50  30.576  1.675                          (----*----) 
Sugarcane B  50  30.973  2.287                             (----*----) 
Sugarcane C  50  29.036  1.952        (----*----) 

                                                 ---+---------+---------+---------+------ 
                                                   28.8      30.0      31.2      32.4 

 

 

Table 9: One-way ANOVA test on the print contrast of cyan 
Source DF SS MS F P 
Factor 3 214.35 71.45 33.04 0.000 
Error 196 423.88 2.16   
Total 199 638.24    
                                     Individual 95% CIs For Mean Based on Pooled StDev 
Level                N    Mean  StDev         +---------+---------+---------+--------- 
Wood-based  50  25.253  1.699                                               (----*---) 
Sugarcane A  50  24.288  1.110                                    (---*---) 
Sugarcane B  50  23.537  1.299                         (---*---) 
Sugarcane C  50  22.425  1.687         (---*---) 

                                                  +---------+---------+---------+--------- 
                                                  22.0      23.0      24.0      25.0 

Table 10: One-way ANOVA test on the print contrast of black 
Source DF SS MS F P 
Factor 3 60.37 20.12 5.61 0.001 
Error 196 702.84 3.59   
Total 199 763.21    
                                     Individual 95% CIs For Mean Based on Pooled StDev 
Level                N    Mean  StDev         -+---------+---------+---------+-------- 
Wood-based  50  39.693  1.859         (-------*-------) 
Sugarcane A  50  41.127  1.228                                      (-------*------) 
Sugarcane B  50  40.914  1.890                                  (------*-------) 
Sugarcane C  50  40.465  2.409                          (------*-------) 

                                                  -+---------+---------+---------+-------- 
                                                 39.20     39.90     40.60     41.30 

One-way ANOVA test on the color gamut difference among 
the tested copy papers was shown in Table 11. It shows that at 
least one pair of the mean color gamut values is significantly 
different at 0.05 levels (the significant value of p is 0.000 < 0.05 
(α)). Based upon 95% confidence intervals of measurements, the 
color gamut of wood-based copy paper is significantly different 
from that of sugarcane copy paper. The average color gamut value 
of sugarcane A copy paper is close to that of sugarcane C copy 
paper.  

Table 11: One-way ANOVA test on the color gamut 
Sourc
e 

DF SS MS F P 

Factor 3 2496764462
4 

832254820
8 

209.06 0.000 

Error 196 7802567760 39809019   
Total 199 3277021238

5 
   

                                     Individual 95% CIs For Mean Based on Pooled StDev 
Level         N    Mean  StDev              -------+---------+---------+---------+-- 
Wood-based  50  336358   3712                                                     (-*--) 
Sugarcane A  50  312351   3414              (-*--) 
Sugarcane B  50  308103  10248     (-*-) 
Sugarcane C  50  312096   5365             (-*-) 

                                                -------+---------+---------+---------+-- 
                                                312000    320000    328000    336000 

Capability Analyses 
The tools within the Minitab 16.0 software used to analyze 

the consistency for optical density and color gamut measurements 
are individual control chart (I chart), moving range charts (MR 
chart), and capability analysis. Individual control chart (I chart) 
and moving range charts (MR chart) were used to remove the 
outlier data. The capability analysis tool was used to calculate Cp 
index for each paper type. In order to do the capability analysis, 
lower specification limit (LSL) and upper specification limit 
(USL) are required input parameters. However, due to lack of 
historical parameters of LSL and USL for color-related attributes 
of paper, relative specification limits were determined using test 
data. After eliminating all outlier points, revised Sigma (the 
process standard deviation) was calculated for each paper type and 
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the average Sigma was computed from the Sigmas of wood-based 
and sugarcane papers. The relative LSL and USL (Tables 12) were 
obtained by subtracting and adding the appropriate average 
3*Sigma value from each individual paper type mean, 
respectively. 

Table 12: The LSL and USL for each attribute 
 Wood-based Sugarcane A  Sugarcane B Sugarcane C  

LSL USL LSL USL LSL USL LSL USL 

Optical 
Density 

Y 0.80 0.89 0.79 0.88 0.80 0.89 0.78 0.87
M 1.03 1.16 1.00 1.13 1.01 1.14 0.99 1.12
C 1.15 1.28 1.11 1.24 1.14 1.26 1.10 1.22
K 1.49 1.73 1.46 1.70 1.48 1.72 1.47 1.70

Print 
Contrast 

Y 12.54 25.65 11.73 24.84 12.20 25.31 9.93 23.04
M 25.51 38.71 23.98 37.18 24.37 37.57 22.34 35.54
C 21.01 29.49 20.05 28.53 19.29 27.78 18.25 26.74
K 34.58 44.80 36.01 46.22 35.80 46.02 35.35 45.57

Color Gamut 322,602 350,114 298,595 326,107 294,533 322,045 298,340 325,852

Using LSL and USL values in Tables 12, the relative Cp 
indices were calculated. Results for color attributes are shown in 
Table 13. A higher Cp index indicates more capable or more 
consistent results from the printing process. As shown in Table 13, 
the sugarcane B had the largest relative Cp index for optical 
densities yellow (Cp = 1.39) and cyan (Cp = 1.83). The Sugarcane 
A copy paper had the largest relative Cp for the print contrast cyan 
(Cp = 1.13), black (Cp = 1.80), and color gamut (Cp = 1.65). 
Overall, sugarcane A was the most capable copy paper for 
delivering consistent results in print contrast and color gamut. The 
sugarcane C copy paper, on the other hand, was the least capable 
paper for delivering consistent results in optical density and print 
contrast, with exception of magenta. 

Table 13: The relative PCR (Cp value) for the tested copy papers 
Cp value Copy Paper Sugarcane A Sugarcane B Sugarcane C 

Optical 
Density 

Y 1.07 1.02 1.39 0.73 
M 0.91 0.99 0.93 1.23 
C 0.83 1.07 1.83 0.76 
K 1.20 1.26 1.20 0.65 

Print 
Contrast 

Y 0.88 1.23 1.39 0.75 
M 0.84 1.15 0.85 1.30 
C 0.84 1.13 1.07 1.01 
K 1.08 1.80 0.93 0.68 

Color Gamut 1.06 1.65 0.54 0.84 

Conclusions 
 Achieving uniformity of printing and obtaining good color 

reproduction performance are crucial in the print production. This 
study investigated the copy paper application of sugarcane 
alternatives. It was found that, sugarcane A copy paper was 
competitive with wood-based copy paper in terms of color 
reproduction consistency. Although wood-based copy paper 
yielded higher optical density, print contrast, and color gamut, 
sugarcane A was the most capable copy paper for delivering 
consistent results in color-related attributes. The sugarcane C copy 
paper, on the other hand, was the least capable paper for delivering 
consistent results. Users can choose sugarcane A copy paper as 
alternative when consistency is the highest priority. 
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