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Abstract 

This paper proposes a new technique of image reading for 
printed material using a one-chip image sensor that enables high 
resolution and solves the problem of false colors around pattern 
edges. To achieve this, the technique adopts a novel method that 
produces a color component value of a pixel that is not sampled 
based on the supposition that there is only one color dot in the 
background color of printed matter in small areas such as the 
aperture areas of the pixels of the image sensor. Based on this 
supposition, we derive the linear relationship between the color 
component and luminance in such small areas. In addition to using 
this linear relationship, using a color filter with a wide band 
transmission spectrum also contributes to achieving high 
resolution with this technique. We conducted a simulation where 
we used an LMS-type color filter as a wideband spectrum filter. 
The results from the simulation demonstrated the effectiveness of 
this method indicating that we could obtain high resolution for all 
color component signals as high that of a 3-chip color image 
sensor and it could improve color reproductivity around pattern 
edges.  

Introduction  
Image sensors have thus far greatly evolved in terms of 

resolution sensitivity and reduced size. Size reductions have 
enabled image-input devices such as digital cameras and 
image scanners to become very compact and this has spread 
their applications. Methods that use one-chip sensors have 
an advantage to those that use three-chip sensors for reading 
color images from the point of view of compactness. 
However, one-chip sensors have some shortcomings. The 
biggest is that they have lower resolution than three chip 
sensors. In addition to lower resolution, they have problems 
with false colors around pattern edges. This results from 
differences in the sampled pixels in color components 
because only one color component can be sampled at each 
pixel. Various techniques of interpolation have been studied 
to produce color component signals at pixels where they are 
not sampled [1]–[3]; however, the problems with false 
colors around pattern edges have not been resolved. 
Moreover, the resolution of color component has not been 
improved by these techniques because interpolation 
increases the appearance of the number of pixels but not 
actual ones in which color components are sampled. 

This paper proposes a new technique that enables high 
resolution and solves the problems with false colors around 

pattern edges in reading images for printed material. To 
achieve this, the technique adopts a novel method that 
produces color components based on the supposition that 
for small areas, color components and luminance have a 
linear relationship. Moreover, this technique uses a color 
filter with a wideband transmission spectrum to achieve 
high resolution and accurate color reproductivity around 
pattern edges. We conducted a simulation, which 
demonstrated the effectiveness of this method, where we 
used a LMS type color filter as a wideband spectrum filter. 
This paper also describes the simulation and the results we 
obtained from it. 

Proposal 
The technique we propose assumes that there are only 

two colors in small areas of printed color images such as the 
aperture of the pixel of the image sensor, i.e., a colored dot 
and a background, as shown Fig. 1. If we use an LMS color 
component in these cases, the signal from the pixels for 
each color component is expressed by Eqs.1 – 3.  

),1( PLPLL um −+= ,           (1) 
),1( PMPMM um −+=   and (2) 

),1( PSPSS um −+=              (3) 

where P is the ratio of the color dot area in the aperture in 
Fig. 1, and Lm, Mm, and Sm are the L, M, and S components 
for the color dot, and Lu, Mu, and Su are the L, M, and S 
components for the background. Luminance K is expressed 
as the linear summation in Eq. 4. 

SaMaLaK SML ++= ,          (4) 

where aL, aM, and aS are constants. Substituting L, M, and S 
in Eqs. 1–3 for those in Eq. 4, we can obtain Eq. 5. 
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Figure 1 Model of image reading for printed material. 
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 op CPCK += ,                  (5) 

where Cp and C0 are constants and expressed by Eqs. 6 and 
7. 

uSuMuLp SaMaLaC ++=  and     (6) 

)()()( umSumMumLo SSaMMaLLaC −+−+−=    (7) 

 We can obtain Eqs. 8–10 by substituting P in Eq. 5 for it in 
Eqs. 1–3. 

0LKCL L += ,                          (8) 

0MKCM M += , and                 (9) 
 0SKCS S += ,                          (10) 

where CL, CM ,CS, L0, M0, and S0 are constants. Eqs. 8–10 
indicate that each color component L, M, and S, are linear 
to luminance K within a small area where there are only two 
kinds of colors, i.e., a color dot and a background, as shown 
in Fig 1. As the aperture of the image sensor is sufficiently 
small, there is only one color dot and a background in the 
aperture in almost all cases. Therefore, we can assume that 
L, M, and S are linear to luminance K within a small area 
based on Eqs. 8–10.  
 Figure 2 illustrates the process we used to obtain high-
resolution color components L, M, and S and luminance K. 
Figure 2 (a) outlines the sensor layout. In Fig. 2 (a), G1 G2 
and G3 indicate the pixel group which consists of three 
pixels for each color component.  

The high-resolution process consists of four steps. 
Step 1:  First, we set the values of the L, M, and S 

component signals of the pixels, i.e., those that have not 
been sampled, to the same value as those of sampled pixels 
in the same pixel group shown in Fig. 2 (b). 

Step 2:  The value of the luminance K signal is 
determined by Eq. 4 for all pixels in the same group shown 
in Fig. 2 (c). 

Step 3: Assuming that K and L (M and S) are linear as 
given in Eqs. 8–10, we obtain an approximate linear 
equation for K and L (M and S) from the data of L, M, S, 
and K of several neighboring pixel groups including 
noticing pixel group using the least-squares method, as 
given in Eq. 11–13.  
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where rL, rM, and rS are the correlation coefficients of K and 
each color component, δL,  δΜ, δS, and δK are standard 
deviations of data used on L, M, S and K, and Kav, Lav, Mav 
and Kav are their averaged values. Using an approximate 
linear equation for K and L (M and S) given in Eqs. 11–13, 

we obtain high-resolution luminance signal KLi shown in 
Fig. 2 (d).  The subscript L (M and S) of K indicates that 
this luminance signal is for a pixel where the L component 
signal is sampled and it is obtained from the data of L (M 
and S) and K obtained in Step 1.  The subscript i of K 
indicates that it is the signal in the i-th pixel group. 

Step 4: This is the step to obtain the high-resolution L, 
M, and S component signals shown in Fig. 2 (e). From Eqs. 
11–13, we obtain Eqs. 14–16.  
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but we obtain the new Eqs. 14–16 above using several 
neighboring pixel group data of the high-resolution 
luminance signals obtained in Step 3 and the L (M and S) 
signal obtained in Step 1 in Fig. 2 (b) with a method similar 
to that in Step 2. 

L M S L M S L M S L

G1 G2 G4 

(a) Sensor layout 

L L1 L2 L3 L4 

M1 M2
M3 M

S S1 S2 S3 

(b) Step 1: Values of non-sampled pixels are set to value of sampled 
pixels in same pixel group 

K K1 K2 K3 

(c) Step 2: Value of luminance K of i th pixel group is calculated by Eq. 
4

H-K

(d) Step 3: High-resolution luminance signal H–K is obtained with Eqs. 
11–13. 

KMKL2 
KS2 

H-L L22L21 L23 

M21 M22 M23 H-M

H-S S21 S22 S23 

(e) Step 4: High-resolution L, M, and S component signals H–L, H–M, 
and H–S are obtained with Eqs. 14–16 

Figure 2 Steps for producing high resolution signal.  
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This technique can produce a color component signal 
with resolution as high as that of a three-chip image sensor. 
This is theoretically effective for an RGB color filter; 
however, if we use a wide band spectrum filter whose bands 
overlap like those in an LMS color filter, we can reduce the 
error in the luminance signal estimated in Step 3 and, as a 
result, we can obtain an accurate high-resolution color-
component signal. 

Simulation 

Method 
We simulated the technique we propose to confirm its 

effectiveness. Figure 3 shows the spectra for the LMS and 
RGB color filters we used in the simulation. The signals 
from each pixel were calculated with Eq. 17.  

λλλ dPFS jiji )()(, ∫= ,     (17) 

where Fi(λ) is the transmission spectrum of the i (i=L, M, 
and S) color filter and Pj(λ) is the reflection spectrum of the 
j (j=C, Y, and M) colored ink. We assumed the ink that was 
used was based on the “Japan Color” standard. 

We studied what effect the use of LMS color filters those 
had wide band transmission spectrum compared to RGB 
color filters would have in this simulation. Moreover, we 
confirmed whether high-resolution reading was possible by 
checking the pattern edge of the line and space patterns.  

We carried out the simulation on a linear sensor whose 
pixel layout is shown in Fig. 2 (a), and the data from 25 
neighboring pixel groups were used to obtain an 

approximate linear equation for K and the color components 
in Eqs. 11–16. 

Results and discussion 
Figure 4 presents the simulation results on what effect the 

different colored filters had. We can see that for the RGB 
color filter, the color component signal processed for high 
resolution is on an uneven level and the luminance signal 
was not sufficiently corrected. However, the color 
component signal for the LMS color filter processed for 
high resolution has fewer uneven levels and the luminance 
signal is sufficiently corrected. This is because signals that 
are close to the luminance signal can be obtained using the 
LMS color filter since their transmission spectrum is wider 
than that of the RGB colored filter.  

Figure 5 shows the results for the simulation on the signal 
around the pattern edge of the line and space (white). Figure 
5 (a) shows the original LMS component signal. We 
assumed the sensor had a pixel density of 600 DPI. 
Therefore, all LMS component signals were sampled at 200 
DPI. Figure 5 (b) shows the signals produced by 
interpolation. We can see that the colors differ more than 
the originals around the edge; moreover, the curve is not 
sharp. Figure 5 (c) shows corrected luminance signals H-K. 
We can see from Fig. 5 (c) that H-K is even due to 
correction. Figure 5 (d) shows the LMS color component 
signal produced using H-K. It can be seen that the curve 
around the edge is sharp and colors are accurately 
reproduced. 

The simulation results in Fig. 5 demonstrate that the 
proposed technique effectively improves the resolution of 
the one-chip image sensor. 

Conclusions 
We proposed a new technique for improving the 

resolution of a one-chip color image sensor using an LMS 
type color filter. Based on the supposition that LMS color 
components are linear to luminance K within a small area, 
we could obtain high resolution LMS color component 
signals that were as high as those in three-chip color image 
sensors. We demonstrated the effectiveness of the technique 
we propose in a simulation. 
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Figure 5 Results for the simulation on the signal around the pattern edge

(a) Luminance signal calculated from RGB signal 
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Figure 4 Simulation results on effect of difference of color filter. 

(d) LMS signal processed for high resolution 
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(b) RGB signal processed for high resolution 
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