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Abstract 

The potential of 3D printing has been under technical and 
philosophical discussion for some time, but current rapid 
prototyping materials can be costly and are limited in terms of 
functional and visual qualities. Food-based materials could 
provide a novel and exciting alternative which may also be 
affordable and accessible as 3d printing extends from industrial 
applications towards educational and home use. 

This paper will compare and contrast the findings of a 
research project that explores freeform fabrication of food-based 
materials using rapid prototyping techniques. The three techniques 
are: 

Rapid tooling: Using conventional Z-Corp powder binder 3d 
printing to fabricate master models from which silicon moulds are 
made and food materials cast. 

Powder / binder 3D printing using a combination of different 
sugars to produce edible forms. 

Extrusion based rapid manufacture using materials that 
include potato, chocolate and cream cheese. 

The investigation of food as a material used in conjunction 
with these technologies is a growing area of interest and 
investigation. This paper will review the work already being 
undertaken by others in the field, as well as articulating the 
findings of our research project, and pointing to opportunities for 
future developments in this field. 
 

The Research 
The potential of Solid Freeform Fabrication (SFF) to ‘democratize 
innovation’[1] is huge, and through open source technology  
curious and inventive engineers, architects, designers, hobbyists, 
and now more recently even culinary experts, are collectively 
contributing to what has become a self-sustaining and self-
perpetuating community of innovators. 
The use of food as an SFF material is a rapidly growing area of 
interest and given the high cost and sometimes unsatisfactory 
aesthetics of traditional SFF materials is providing fertile creative 
and technical ground for experimentation. Since Noy Schaal began 
working with chocolate for her high school projects on the 
Fab@Home model 1 unit in 2007, [1] the idea of working with 
food has ignited imaginations globally, fuelled largely by the 
Fab@Home open source philosophy. Fab@Home is a syringe 
based deposition tool that allows for the printing of any material 
that can be loaded into a syringe. Perhaps the most significant of 
the current investigations is the work being undertaken between 
Cornell’s Fab@Home research group and The French Culinary 
Institute in New York. David Arnold, director of culinary 
technology at the French Culinary Institute has been testing the 
technology since 2009 and has printed with icing, cookie dough 
and masa (corn dough) , even fabricating spaceships out of 
scallop and cheese puree [2]. Dr. Lipton, leading the Fab@home 

project, sees potential for this technology to transform the way in 
which we prepare and consume food through the future 
development of ‘Fabapps’ that allow you to tweak your foods 
taste, texture and nutritional content [3]. Instead of just using hand-
made ingredients and purees, this system would utilize the use of 
hydrocolloid liquid ingredients allowing complete control over the 
food and its nutritional and behavioral properties. Digital 
molecular gastronomy for the culinary avant-garde.  
The interest for Arnold however, lies in the capacity that 3D 
printing has to create a new material language for cuisine, to create 
new textures for consumption that were previously unimaginable 
[4]. This is made evident in his work with masa, using a stochastic 
printing technique to create edible ‘squiggles’ that are reminiscent 
of the texture of Velcro [5].  
 
Another research group whose work has drawn on the Fab@Home  
model of extrusion based deposition and open source 
dissemination is the ‘Fabaroni.’ [6]. A student project from the 
MIT ‘how to make almost anything’ class in 2007, they tested 
working with foods such as cheese, chocolate, chocolate sauce, 
marshmallow, vanilla icing, marzipan, pasta dough and peanut 
butter. The most successful in their tests was pasta dough, for its 
good structure and speedy drying properties; it also offered good 
consistency, flowed well and hardened quickly [7].  
 
ChocALM [8] is another extrusion based 3D printing project that 
utilizes food, but whereas our project set out to develop a 
comparative study of various food stuffs and fabrication 
techniques, the chocALM project, a collaborative research project 
between Exeter University’s School of Engineering Computer 
Science & Mathematics, and Exeter Advanced Technologies, 
worked specifically with chocolate. Recently, findings from this 
project have been developed towards an online customization tool 
for the custom-design and manufacture of 3D printed chocolate 
products [9].  
 
Candyfab is another freeform fabrication project initiated by the 
‘Evil Mad Scientist’ laboratories. Instead of using a syringe based 
extrusion method it works by building up layers of 2D images and 
then selectively fusing them together, using a ‘selective hot air 
sintering and melting method’ (SHASAM). The print bed is then 
lowered slightly, a new layer of sugar is added, and the next 2D 
image is printed, fusing with the layer below. This process is 
repeated to build up the three-dimensional object [10]. Sugar is the 
ideal material for this project as it’s inexpensive, nontoxic, and 
readily available, "and when you're cooking, it smells like cotton 
candy and crème brûlée" [11]. The type of objects built on the 
Candyfab have less gastronomic appeal than those developed using 
the syringe based methods, but it allows for the manufacture of 
complex edible shapes that cannot be manufactured using 
traditional subtractive or casting processes. 
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Of the three processes that we set out to explore in our project, 
probably the least successful in terms of aesthetic complexity has 
been the most conventional; the use of the Z-corp machine to 
fabricate master patterns from which silicone moulds were then 
taken. Having developed  a series of miniature bombs in Rhino 3D 
CAD, using the H bomb, various different cluster bombs and 
nuclear missiles as visual models, I was interested in creating an 
uncomfortable juxtaposition between my casting material and the 
form, these were to be chocolate bombs - ‘bomb bombs’.  
Although this type of rapid tooling can generate an exceptional 
level of digitally generated precision, we had difficulty achieving 
this in chocolate – hence the aesthetic simplicity of the forms. 
Chocolate is a surprisingly capricious material to work with, and 
has relatively narrow temperature range for effective manipulation. 
The first moulds we made were approximately 50mm in length, 
and proved to be difficult to cast in chocolate with even the 
simplest details proving too structurally weak to survive being 
taken out of the silicone mould. This combined with the inherently 
grainy surface texture of the original Z-corps mould, meant that 
the cast objects were less than satisfactory. 

 
Figure 1  Z-Corp printed master pattern and chocolate bomb 

Increasing the scale and finely sanding the printed mould before 
the silicone cast was taken afforded me opportunity to address 
both of those issues and the results can be seen in figure 1. 
The second of the techniques the project aimed to explore was to 
investigate the potential of replacing the original Z-corp powder 
with sugars. Sugar being such a cheap and readily available 
material was the ideal substitute for the Z-corp powder in the 
context of the edible project. 
Using a simple tooth shape (‘sweet tooth’) we began to experiment 
with a number of different sugar mixes in an attempt to find one 
that gave us the kind of print quality traditional Z-corp powder did. 
We started by investigating the particle size of the Z-corp powder 
and a range of sugars and sugar substitutes, with an aim of 
replicating the original Z-corp powder as closely as possible. We 
wanted a bimodal distribution of overall particle sizes between 149 
and 37 microns, with at least 55% between 53 and 37 microns. 
Following a series of gradation tests we started with a 50/50 blend 
of icing sugar and caster sugar as this provided a similar range of 
particle sizes. The first test printed reasonably well and we were 
able to extract a form approximately 28mm in length within about 
an hour of the print finishing. The form was firmly bound and 
solid, although still too wet at this stage to brush effectively. The 
form had a depressed top surface, suggesting that there may be too 
much binder saturating the print, and as such it was notably bigger 
and less well defined than the original CAD model, indicating that 

binder had bled into the surrounding sugar particles during the 
print process. 
We experimented using a number of different mixes and blends, 
adding and subtracting variant materials in 10 percentile quantities 
using the Z-corp particle sizes as a guide. We tested using 
combinations of caster, icing and silk sugars as well as blends with 
maltodextrin. 

 
Figure 2  Sugar teeth, 50/50% icing / caster sugar, 35% saturation. 

The most successful of these (see figure 2) occurred early on in 
our tests, and is a 50/50 blend of icing sugar and caster sugar 
with a 35% saturation. The surface is still coarse by comparison 
to an original z-corp print and the forms are more brittle, but after 
testing other sugar blends that either saturated too easily or were 
too brittle to extract from the machine, these were the most 
successful. 

 
Figure 3 Chocolate star print extruded at ‘Bits from Bytes’ 

The third part of the research project, using the RapMan 3.1 3D 
printer to extrude edible materials, (See figure 3) has been by far 
the most exciting and still has the most potential for creative and 
culinary exploration. We soon discovered this technique relies less 
heavily on the minutiae of particle sizes and recipes, and more so 
on creative intent, and taste! 
The Rapman normally extrudes a filament of plastic through a 
heated nozzle, but we adapted the machine to extrude cold pastes. 
‘Bits from Bytes’ [12] and Dries Verbruggen [13] recommended 
that we try using an auger valve, an off the shelf component part 
normally used in adhesive dispensing. It requires constant 
pressure; we used approximately 10-20 psi for these tests which 
we achieved using a bicycle pump connected to a pressure 
reservoir.  
The auger allowed us more control over the extrusion process as it 
allowed us to experiment with both the level of pressure and the 
speed at which the material was extruded. The most precise control 
was reached by working with a slower speed over a longer period 
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of time, but increasing the pressure helped to clear small blockages 
or air bubbles. (See figure 4). We used a variety of plastic tapered 
tips on the auger, ranging in size from 18 – 22 gage. Tapered tips 
produce less back pressure than straight walled tips, but are less 
resistant to paste drool, which at this point in the project wasn’t a 
problem, but may need addressing as we refine the product.  

 
Figure 4 Chocolate flavoured icing test print, evidencing the effects of uneven 
paste flow and air bubbles in the paste. 

Early experiments working with chocolate revealed its sensitivity 
as a material and instead of loading up the syringe barrel with 
previously melted chocolate we wanted to try working with the 
principle of heating the chocolate whilst it was in the syringe, 
and then keeping it at optimum temperature during the extrusion 
process. We initially tried to do this using a small 
thermostatically controlled and made-to-measure heating jacket 
wrapped around the syringe, but it proved unsuccessful as we 
couldn’t wrap the jacket around the inlet fitting and auger valve. 
This meant that although the chocolate in the syringe was kept at 
the right temperature of between 44 and 45°C, it cooled and 
hardened in the valve before it could be extruded.  
 

 
Figure 5 Extruding melted chocolate; the extruded chocolate loses definition 
due to its liquid nature. 

We then went on to try several different chocolate and chocolate 
based products. Figure 5 shows another melted chocolate sample 
being extruded through a 0.84mm tip (18 gage), this time with 
the auger valve. This rendered poorly and was unworkable in 
terms of ‘build’ as the melted chocolate spread and expanded at 
the point of extrusion. Figure 6 shows a truffle mix experiment 
that clogged and separated during the process due to the shearing 
action of the auger valve. Figure 7 shows a lace doily, extruded 
in ‘Betty Crocker ready mix chocolate fudge icing’ using a 
0.41mm tip  (22 gage), This gave an even extrusion rate and 

generated an aesthetically strong and consistently smooth and 
detailed build. 

 
Figure 6   Truffle mix trials. Butter, cream and chocolate. 

 
Figure 7   Lace doily made using Betty Crocker icing. 

 
Figure 8 Mr. Mash dogtooth checks potato waffle. 

 
Figure 9 Real mashed potato waffle print. 
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Figure 10 Cream cheese lace doily.   

Further material enquiry on the Rapman involved the use of both 
real mashed potato and ‘Mr. Mash’ instant mashed potato, with 
the aim of producing dogtooth check waffles. Unfortunately, as 
far as taste is concerned, Mr.Mash provided a more consistently 
smooth paste that extruded evenly once we found the right 
settings. See figure 8. 
Figure 9 by comparison, is real mashed potato that ‘puffed’ once 
it had been extruded due to the high level of pressure in the auger 
valve.  We also experimented with extruding cream cheese, (see 
figure 10). This provided an almost ideal consistency of paste 
when we used 0.84mm tip (18 gage), but when we tried with a 
smaller size tip 0.41mm (22 gage) the shearing action of the 
auger caused the cheese  to shear and separate. 

Summary 
We tested 3 forming methods using a range of foodstuffs and 
edible products. The tables below indicate the overall findings of 
the project to date. Future research will include further 
experimentation with the Rapman and different ingredient types, 
as well as preliminary work in molecular gastronomy, with 
hydrocolloids and gelling agents such as gellan, sodium alginate 
and calcium lactate. 

Tables of findings 
Z-corp printed mould  Findings 
Range of materials 
 

Chocolate, jelly, materials that are 
castable. 

Resolution High. 
Types of geometry 
 

Limited to forms that can be 
removed from moulds. 

Aesthetic qualities Good, provided the forms are not 
too complex. 

Structural strength Solid. 
Z-corp printed powder Findings 
Range of materials 
 

Powders such as sugars, starch, 
cornflour etc. 

Resolution High quality, but coarse by 
comparison to the original Z-corp 
powder material, definition lost due 
to excess saturation. 

Types of geometry Complex shapes are possible . 
Aesthetic qualities Good. 
Structural strength Brittle by comparison to original Z-

corp prints, but robust enough to be 
handled / consumed. 

Extrusion method Findings 
Range of materials 
 

Materials that can be finely pureed 
into a paste or puree. 

Resolution Variable, depending on diameter of 
tip and material behavior under 
pressure. 

Types of geometry 
 

Potentially complex at low relief 
level, objects with height necessitate 
structural integrity of material not 
always achievable in paste form. 
Material dependent, 3D shapes need 
to be self supporting. 

Aesthetic qualities Extruded line always visible, this 
becomes less obvious with materials 
that do not harden, e.g. potato and 
cream cheese. 

Structural strength Dependent on materials. If materials 
harden – e.g. chocolate, the objects 
are handlable, whereas cheese / 
potato remain fragile. 
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