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Abstract

When considering “printed electronics,” the substrates of
interest can vary from smooth glass to flexible polymeric supports,
and even to rough paper. Relatively few standard semiconductor
processes adapt readily to a wide variety of substrates. We will
discuss an approach to thin-film electronics that uses the
conformality of atomic layer deposition to produce good-quality
metal oxide thin-film transistors on a wide variety of substrates.

Deposition of the active materials is by an atmospheric
pressure, roll-compatible process called spatial atomic layer
deposition (SALD), and the materials deposited are metal oxides.
Electrical properties of SALD-grown planar thin-film transistors
include mobility above 20 cm*/V-s, high on/off ratios, and good
uniformity of the deposited layers.

In addition to depositing good-quality thin-film transistor
layers at temperatures of 200 °C, this process allows for decent
transistors at temperatures down to 100 °C, thus opening up the
range of usable substrates.

A novel vertical transistor geometry that exploits the
conformal nature of the SALD deposition system will also be
introduced. This device architecture shows good electrical
properties and could provide a promising approach for both rigid
and flexible substrates.
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Introduction

The field of zinc oxide (ZnO)-based electronics has shown
significant growth in past years because of features that include
high mobility [1], the ability to form ternary and quaternary
systems that exist as amorphous films [2], and excellent electrical
and chemical stability for materials that are grown at relatively low
processing temperatures [3],[4]. Typical oxide deposition methods
require vacuum processing, which can limit the ability to handle
continuous substrates and can add processing complexity.

In this work, we describe oxide-based devices produced by a
rapid atmospheric pressure atomic layer deposition (ALD) system
termed Spatial Atomic Layer Deposition (SALD). This process can
operate in open atmosphere and is extendable to large or
continuous substrates.

Spatial Atomic Layer Deposition

The majority of ALD reactors are enclosed systems used to
expose a substrate to a succession of reactants, by introducing and
then pumping the precursor and inert gases. While this approach is
very successful at producing high-quality ALD films, there are
limitations. First, it requires a chamber to allow control of
precursor introduction and purging, and the chamber must
therefore be larger than the substrate under consideration. Second,
the ALD chamber rarely operates at steady state. Instead, a
sophisticated valving operation is required, leading to equipment
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complexity and a constantly varying composition of precursors in
the chamber.

An alternative to the above approach is to confine each of the
reactive gases to particular spatial regions of a deposition head [5],
[6] and allow relative movement of a substrate to accomplish the
alternate exposures of the ALD cycle. The schematic of a spatial
ALD system (Fig. 1) shows a substrate and the localization of
precursor and inert gases in channels. As the substrate moves, each
point on the substrate sees the sequence of localized gases
originating from the coating head. The actual sequence is very
similar to that experienced in a chamber-based ALD system. As
with chamber ALD, the success of the process requires that any
gas phase mixture of the precursors be avoided. In the case of the
SALD system, this means that the composition of the gas
experienced at any point on the substrate must change sharply as
the point is moved from one gas channel to another. Our system
employs linear inlet and exhaust slots, and carefully designed
pressure gradients to prevent gas mixing. The arrangement of gas
channels on the surface of the coating head is shown in Fig. 2,
along with the desired localization of gases. The substrate is
allowed to approach the head until the pressure field resulting from

Gas Slots

Figure 1. Schematic of SALD head, showing localized gas flows. Substrate
oscillates over the different precursor and inert inlets to build up a film.

the gas flow supports the substrate, much like a hockey puck on an
air table. The closeness of the substrate to the head forces the gas
emitted from an inlet slot to flow only to the adjacent exhaust slots,
and additionally makes the effective chamber size very small,
leading to high turnover rates for each channel and thus improved
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gas isolation. In a typical operation, the entire channel volume is
replaced in a few tenths of a millisecond.

Our models and experiments indicate very good gas isolation,
regardless of the speed at which the substrate travels over the head
[6]. However, reaction times need to be fast enough so that nearly
complete exposure will take place in the residence time of the
substrate over a channel, and this provides the limit to how fast the
system can operate at a given temperature.

The high degree of gas isolation we provide is essential not
only for separating the ALD reactants, but also for isolating the
ALD reaction system from the surrounding ambient. The result is
that the ALD system is able to operate in open air without any
confinement while the deposition region environment is perfectly
controlled. This gives a substantial advantage in footprint and
equipment complexity, as the deposition system can be smaller
than the substrate and requires no chamber and no sequenced
vacuum pumping.

ZnO Thin-Film Transistors

Typical thin-film transistors are planar and often have the
form of the staggered-inverted structure shown schematically in
Fig. 2. For our routine measurements, a substrate coated with
chromium serves as the gate contact. The SALD system is then
used to deposit an Al,O; film of approximately 500 A at 200 °C.
During this deposition, the partial pressure of TMA in the metal
channels is 220 mtorr, while the partial pressure of water in the
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Figure 2. Schematic (not to scale) of staggered inverted thin-film transistor
with passivation.

oxygen source channels is 230 mtorr. The substrate speed yields a
channel residence time of 100 ms (the same for all precursor and
inert streams), and a growth rate of 0.92 A/cycle is obtained.

The ZnO semiconductor layer, with thickness varying from
120 A to about 300 A, is deposited on top of the Al,O5 dielectric,
using the same equipment but with the metal channels now
containing a partial pressure of DEZ of 310 mtorr. The total time
for loading the sample and depositing the insulator and
semiconductor, and unloading the sample is less than 10 min.

Aluminum top source and drain contacts are patterned from a
lithographic lift-off process. The TFTs are isolated by etching the
ZnO, using PMMA to protect the channels, using a very dilute
nitric acid solution. After the PMMA is stripped, a final
passivation layer of 300 A thick Al,Os is deposited under the same
conditions as for the gate dielectric.
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Devices made this way on glass show typical peak mobility of
over 20 c¢cm*/V-s in both the saturation and linear regimes, for
devices with channel lengths of 5 um and longer. The SALD
deposition system shows remarkable thickness uniformity (less
than 0.2% across the width of the deposition), and the electrical
uniformity follows suit. In current designs, for example, as
measured over 240 TFTs distributed across the deposition area, the
typical threshold voltage variation measured is less than 50 mV.

Devices can also be fabricated at lower deposition
temperatures. A series of samples was prepared on glass substrates
with deposition temperatures of 200 °C, 150 °C, and 100 °C, for
direct comparison, as shown in Fig. 3. The difference
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Figure 3. Thin-film mobility as a function of deposition temperature on glass
substrates. Similar depositions at 150 °C on Kapton, PEN, and artificial paper
(Teslin) are included.

between 200 °C and 150 °C is relatively small, while below 150
°C the properties appear to degrade more quickly. However, the
mobility even at 100 °C is over 6 cm*/V-s, remarkably enough.
The threshold voltage variation, shown in Fig. 4, is not large.
Importantly, the gate leakage was comparable on the glass
substrates over the whole temperature range. While the stability of
ZnO devices grown at 200 °C is excellent [6], that of the lower
temperature devices has not been measured.
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Figure 4. Threshold voltage (Vth) variation as a function of deposition
temperature on glass substrates, with comparison to Kapton, PEN, and
artificial paper samples grown at 150 C.
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For comparison, similar depositions were performed on a
polyimide (Kapton) substrate and on a PEN substrate. The Kapton
shows a mobility of 16 cm?/V-s, slightly higher than the 11 cm?/V-
s achieved by the PEN sample. Although not part of the same
series, a similar experiment on synthetic paper (Teslin), deposited
at the same temperature, showed that the extremely rough paper
had working transistors, but with a mobility of only about 1 cm*/V-
s, and noticeably worse gate leakage characteristics. More
experiments are underway to understand the substrate dependence
of these properties.

Vertical ZnO Thin-Film Transistors

Patterning and alignment of planar transistors on flexible
supports continue to be a challenge for short channel lengths. A
solution to this can be found in a novel vertical transistor
architecture enabled by the conformality of atomic layer deposition
processes. The vertical transistor (VTFT) architecture has both
high alignment tolerance as well as submicron channel lengths and
is further compatible with flexible supports.

By using a reentrant profile at the edge of the gate, we coat
with SALD to give uniform films of gate insulator and ZnO
semiconductor that maintain the reentrant profile. Deposition of
the drain-source electrodes by a beam deposition process
automatically yields a transistor. A cross-sectional SEM of one
transistor architecture that employs this approach is shown in Fig.
5. In this figure, a dielectric of aluminum oxide overhangs the gate
metal electrode to give the reentrant profile. The sample was
conformally coated with the insulator and semiconductor.
Evaporative deposition of aluminum provided the drain and
source, divided from each other by the reentrant gap at gate edge.
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Figure 5: Cross sectional view of a vertical transistor: The SEM picture shows
the reentrant profile as well as the excellent conformal coating properties of
the SALD process. Pitting of the aluminum electrodes was incurred during the
focused ion beam (FIB) cross-sectioning.

In the best design, the transistor’s drain current ranges from about
10" A at a gate of -2 V to almost 1 mA at a gate of 10 V, for a
drain voltage of 1.2 V, showing promise of good performance at
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low voltage. These vertical transistors can also be constructed on
flexible substrates.

In summary, the combination of conformal coatings and good
electrical performance give SALD-grown devices good potential
for emerging applications where traditional thin film materials and
processes face significant challenges.
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