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Abstract 
High definition digital imaging is enabled in printers by using 

small micron and nano toner particles. Use of small particles in a 
housing presents challenges in particle flow as small particles tend 
to aggregate, clog and impact either on the wall of the housing or 
on other surfaces. Solids are known to undergo brittle- ductile 
transition depending on the size of a particle, elastic plastic 
behavior and strain rates under which they are deformed.  

In macromolecules, polymer chain flexibility and shear flow 
of uniformly sized, spherical particles can be analyzed. Inter-
particle attractive forces are considered to influence flow of small 
particles. Simulations performed for different strengths of 
cohesion, shear rates, particle stiffnesses, particle volume fractions 
and coefficients of friction show interesting results. From each 
simulation, the average normal and shear stresses and the average 
coordination number have been extracted. Generally small 
particles are externally mixed with nano-sized particles to improve 
flow. Hard nano-sized particles reduce cohesiveness of toner 
particles and reduce its aggregation.  

Particulate flow can some time result in jamming and has 
been analyzed using Lattice- Boltzmann (LB) or DEM (Discrete 
Element Methods) involving deformation from collisions resulting 
from hydrodynamic forces. Consequence of particle impaction on 
surfaces is a reduction in particle charge with wider distribution 
causing shortfalls in electro-photographic development and image 
quality. A rate equation model is developed for impaction in a 
cylindrical cavity that depends on the impact parameter, rate of 
volumetric flow, yield stress (modulus) of the elastic-plastic 
particle, size of the particle and dynamic coefficient of friction. 
The model predictions are compared with experimental data on the 
particle (toner) impaction 

Introduction 
Powder flow is of industrial importance not only in designing 

silos and fluidization beds but also in digital imaging using printers 
and copiers. Toner particles used in digital imaging are 8-10 
micron in size with a wide distribution. The flow of polymeric 
toner particles bound or unbound to carrier beads particles 50-
100micron in size takes place through conveyance by augurs in a 
developer housing to development magnetic rolls. Electric field 
moves particles from develop roll to photoreceptor. Electric field 
moves particles from photoreceptor to paper or transparency. 
Detachment field must overcome toner adhesion to photoreceptor.  

The toner particles on paper or transparency as substrate are 
then fused using contact or non-contact fusing system.  The toner 
particles being micron or sub micron in size can be brittle or 
ductile during deformation on collisions with carrier beads or 
surfaces of the cylindrical cavity, developer housing. Particles go 
through brittle to ductile transition as the particle size is reduced. 
Additionally, toner particles like other cohesive particles tend to 
aggregate and invariably clog and jam during transportation [1]. 

Powders are small granular material in which cohesion is 
never negligible, and, more particularly in which cohesion forces 

are several order of magnitude higher than the weight of the glass 
beads. The maximum stability angle is found to increase with the 
powder cohesiveness. There is found a good correlation between 
bulk stresses and inter-particle contact forces in powders. A 
common characteristic is that a cohesion force between particles 
leads to an increase of the avalanche angle of the media. It has 
been shown that as the cohesion increases, the granular material 
becomes more heterogeneous, and is made of dense clusters 
separated by voids. As the cohesion increases, agglomerates of 
grains increase as transient clusters that leads to a progressive 
expansion of the material. The analysis of the space and time 
correlations shows a structural transition above a critical cohesion 
threshold, associated to a sudden increase of the macroscopic 
friction. Inter-particle forces (van der Waals, electrostatic, other 
contact bridging effects from humidity and hydration lead to 
cohesive forces which can be large compared to gravity acting on 
the fine particles [2]. 

Continuum and Discrete Models 
Models based on bulk properties including compressibility, 

cohesion and bulk yield strength are more routinely used as quasi-
predictive tools for flow behavior, and are regularly employed in 
the design and scale-up of industrial unit operations for powder 
processing as well as overall powder handling systems. Several 
models have been used to analyze flow of powders.  

These include. Lattice - Boltzmann (LB) or DEM (Discrete 
Element Methods), Particle Dynamics method. In the DEM 
method, dynamic motion and mechanical interactions between 
particles arise from collisions, friction, adhesion, and 
electromagnetic forces [3]. The lattice Boltzmann methodLBM!, a 
new method for simulating fluid flow and modeling physics in 
fluids, has also been successfully applied to flow in porous media 
Two approaches have been adopted in simulations of porous flow 
using LBM.  

In the first approach, the fluid in the pores of the medium is 
directly modeled by the standard LBM. It is well known that 
unlike the conventional numerical methods based on 
discretizations of macroscopic continuum equations, LBM is based 
on microscopic models and mesoscopic kinetic equations for 
fluids. The kinetic nature of LBM enables it very suitable for fluid 
systems involving microscopic interactions. Furthermore, the 
simple bounce-back rule for noslip boundary condition makes it 
very suitable to simulate the fluid flows in porous media. Gao and 
Zhao derived LB model by including the porosity into the 
equilibrium distribution, adding a force term to the evolution 
equation and solving Navier-Stokes equations for incompressible 
flow in porous media using Chapman-Enskog procedure. The 
model was used to give numerical simulations of several 2D 
generalized Poiseuille flow, Couette flow, and lid-driven cavity 
flow [4]. 

The use of the discrete particle model (DPM) enables the 
simultaneous ‘measurement’ of several properties, such as the gas 
and particle velocities. and the porosity, which is difficult if not 
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impossible to achieve by direct experimentation. The construction 
of reliable models for large-scale gas–solid contactors is seriously 
hindered by the lack of understanding of the fundamentals of dense 
gas–particle flows. In particular, the phenomena which can be 
related both to the effective gas–particle interaction (drag forces), 
particle–particle interactions (collision forces), and particle–wall 
interaction, are not well understood. The prime difficulty here is 
the large separation of scales: the largest flow structures can be of 
the order of meters; yet these structures are directly influenced by 
details of the particle–particle and particle–gas interactions, which 
take place on the scale of millimeters, or even micrometers[5]. 

 To describe the hydrodynamics of both the gas and particle 
phase, continuum-(Eulerian) and discrete-(Lagrangian) type of 
models have been developed. Discrete element models or DPMs 
have been used for a wide range of applications involving 
particles. The interaction between the particles and the fluid is 
done by coupling the DPM with a finite volume description of the 
gas-phase based on the Navier-Stokes equations for either soft-
sphere model or the hard sphere model. These are Euler-Lagrange 
types of models with discrete description of the particulate phase 
and a continuous description of gas phase. 

Collision Models 
In a hard-sphere system the trajectories of the particles are 

determined by momentum-conserving binary collisions. The 
interactions between particles are assumed to be pair-wise additive 
and instantaneous. In the simulation, the collisions are processed 
one by one according to the order in which the events 

occur. For not too dense systems, the hard-sphere models are 
considerably faster than the soft-sphere models. Note that the 
possible occurrence of multiple collisions at the same instant 
cannot be accounted for. 

In more complex situations, the particles may interact via 
short- or long-range forces, and the trajectories are 

determined by integrating the Newtonian equations of motion. The 
soft-sphere models use a fixed time step and consequently the 
particles are allowed to overlap slightly. The contact forces are 
subsequently calculated from the deformation history of the 
contact using a contact force scheme. 

The soft-sphere models allow for multiple particle overlap 
although the net contact force is obtained from the addition of all 
pair-wise interactions. The soft-sphere models are essentially 

time driven, where the time step should be carefully chosen in 
the calculation of the contact forces. The soft-sphere models that 
can be found in literature mainly differ from each other with 
respect to the contact force scheme that is used. 

The motion of every individual element is calculated using 
Newton’s second law of motion. The forces considered are from 
pressure gradient, drag, gravity, contact forces arising from 
collisions and (long-range) particle–particle interaction Van der 
Waals forces). 
Using a governing equation for discrete particles, drag force was 
derived by Beestra [6].
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In the above equations,the terms d is the particle diameter, μ 
is dynamic coefficient of friction, ε is the dimensionless volume 
fraction and Re is the Reynold’s number.The gas-phase 
hydrodynamics are calculated from the volume-averaged Navier–
Stokes equations. 

 The equations for the gas-phase are coupled with those of the 
particle phase through the porosity and the inter-phase momentum 
exchange. All relevant quantities should be averaged over a 
volume, which is large compared to the size of the particles, and in 
such a way that they are independent of the Eulerian grid size. 

Porosity and the force exerted by the gas-phase on the 
particles may be calculated in a grid-independent manner where 
particles are represented as porous cubes, where this geometry was 
selected because of its computational advantages. The diameter of 
the cube depends on the particle diameter and a constant scaling 
factor a, which defines the ratio between the cube and particle 
diameter and consequently the volume where interaction between 
the fluid and the particle is considered. 

Iordanoff et al.[7] described recent approaches for modeling 
the behavior of third bodies in dry contact. His analysis of existing 
models showed that mathematical modeling of powders falls into 
two general classes, discrete models and continuum models. 
According to Iordanoff, discrete models suffer from inadequate 
understanding of interaction laws, questionable definition of 
particle scale, and huge computational times. On the other hand, 
while continuum models are computationally much simpler, they 
usually are limited to two-dimensional kinetics. In the flow factor 
model of Jeng and Tsai [8].grain-grain collisions and roughness are 
considered deriving flow rate volumes for elastic and inelastic 
grain collisions. The normal stress for top smooth and rough 
surfaces was expressed as a function of the nominal shear rate and 
normal stress increases with increasing nominal shear rate and 
inclination of the upper surface for the smooth surface. The model 
showed that larger particle size and smaller collision energy loss 
contribute to significant roughness effects in grain flow 
lubrication. 

In a sheared granular flow of rough inelastic granular particles 
in a cylindrical cavity, collision between particle and wall can be 
inelastic if contact stress exceeds yield stress of the particle. If the 
coefficient of restitution, ε =0, the particle will stick to the wall, 
where as, for ε =1, the collision is elastic and particle has no loss in 
energy on impact. 

Consider a collision between two particles with precollisional 
linear velocities u and 
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such that the unit vector along the line joining the centers of the 
particles is k. The precollisional relative velocity at the point of 
contact is 

])2/([])2/([ •• ×−−×+= ωσωσ kukug     (4) 
 
The collision rules stipulate that the post-collisional relative 

velocity at the point of contact g ′ is related to the pre-collisional 
relative velocity g by 

 

tttnnn geggeg −=′−=′             (5) 
 
where ng  and ng ′  are the components of g in the direction of k, 

tg ′ and   tg  are the components of g perpendicular to the 
direction of k and tn eande are the normal and tangential 
coefficient of restitution[9]. Analytical results were obtained for 
the velocity distribution function for collisions of smooth particles 
by Kumaran [10] using an asymptotic analysis in the small 
parameter ε = n σ L, which is proportional to the inverse of the 
Knudsen number, where n is the number density, σ is the diameter 
of the particle, and L is the channel width. For sheared granular 
flows in the high knudsen number limit, the frequency of wall-
particle collisions per unit area [11} is proportional Lun y / , 
whereas the number of interparticle collisions is proportional to 

2/1222 )( yx uun +σ subscripts x and y stand for flow and 
gradient directions. 

The flow of a collection of polymer –coated metal sphere in a 
tubular flow was analyzed analytically by considering a single 
inelastic collision as an elastic-plastic collision with plastic 
deformation resulting in adhesion to an impacting surface[12,13]. 
The amount impacted in a single collision was combined with 
collision frequency to obtain a rate equation. The results showed 
that the amount impacted on a surface depends directly on fluid 
flow velocity, density of the particle and radius of the particle.  

In a discrete numerical model for granular assemblies that can 
be applied to flow of toner particle, collisions between toner 
particles can be normal or tangential. A normal collision between 
two objects is characterized by the normal coefficient of restitution 
and the contact time. The normal coefficient of restitution is 
determined experimentally. The collision time is estimated from 
the collision theory of Hertz. In tangential collisions, shear contact 
force component Fs, being the component in s-direction of the 
contact force on particle was modeled with a Coulomb friction 
mode. The friction model for tangential collision is characterized 
by three parameters: the static and dynamic friction coefficient and 
the tangential spring constant.  Adhesion force, Magnetic force, 
Electric force were included in the simulation[14,15]. 

It is known that particles made from a polymer undergo brittle 
to ductile transition. Below a certain molecular weight, a polymer 
is brittle and deforms in ductile fashion. Additionally, a 
polystyrene polymer is brittle while a polycarbonate polymer is 
ductile. A particle below a certain size generally below a micron is 
ductile while it is brittle above that size.  In Chang et. al. model 
[16] the sphere remains in elastic Hertzian contact until a critical 
interference is reached, above which volume conservation of the 
sphere tip is imposed. The contact pressure distribution for the 
plastically deformed sphere was assumed to be rectangular and 
equal to the maximum Hertzian pressure at the critical 
interference. The CEB model suffers from a discontinuity in the 
contact load as well as in the first derivatives of both the contact 

load and the contact area at the transition from the elastic to the 
elastic-plastic regime.  

Works of Nesterenko et al.[17] and Zhodi [18] showed that 
particles as spheres may adhere to one another, forming branched 
aggregates with a transition from size-unstable agglomeration to 
size-stable agglomeration, which is controlled by the velocity field 
and the material properties. Toner particles may also form 
aggregates through collisions in a cavity with a criterion that 
adhesion of two surfaces occurs when p > 2H,where H is the 
hardness of the material. Contact pressure relates to the coefficient 
of restitution by a linear interpolation model between elastic (e = 
1) and adhesive (e = 0) conditions. 

Contact area A can be taken to be a decreasing function of e. 
A linear relation for A in terms of e can be used. 

 ( )( )( )ϕeAAAA f −−+= 100             (7) 
 
Dependence of impaction of toner aggregates to the housing 

cavity was verified experimentally to depend on hardness. As the 
toner particles from resin were melt mixed with ferrite, iron oxide 
hard particles, aggregate sticking decreased.  On the contrary as 
the flow rate of toner aggregates was increased, sticking of 
aggregates to the cavity increased. 

Toner particles 10 micron in size were mixed with carrier 
beads 250 micron in size and sheared in a cylindrical cavity with 
the help of augurs. Toner impaction was obtained by removing the 
loose particles from carrier beads and then transferring stuck toner. 

 
Figure 1 - shows toner impaction as function of toner(particle) hardness. 

Toner particles may form aggregates and collide with other 
aggregates or with surfaces of other materials. Using elastic-plastic 
analysis of Jackson and Green [19] for a deformable toner particle 
sphere pressed by a rigid flat surface of a cylindrical cavity, critical 
interference cω , critical contact force cP and critical contact 

cA area can be calculated.  
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where C is a critical yield stress coefficient dependent on the 
Poisson’s ratio, of the toner material in the neighborhood of 0.33 
and yS is the yield strength 40MPa. Experiments on toner 
impaction by mixing toner particles with carrier beads in a 
cylindrical cavity showed  that impaction, impaction is quadratic 
ally dependent on radius of toner particle.( Figure 2) 

 
The impaction rate is proportional to the energy exchange 

between the erodent and the impacted material surface. Different 
particles transfer the energy to the target over a different volume,  
thereby causing different energy densities in the target material 
and different mechanisms and rates of damage. The solution lies in 
calculation of the energy, absorbed by the plain material surface 
during the impact of a spherical particle. Energy loss strongly 
depends on dynamic coefficients, on the coefficient of velocity 
restitution after impact, and coefficient of dynamic friction. For 
particle wall collisions, kinetic energy loss can be given by [20], 

Where K is kinetic energy loss. 1nν is the normal component 
of particle velocity, k is the coefficient of restitution of the normal 
component of velocity, f is the tangential velocity restitution or 
coefficient of dynamic friction, for a solid sphere λ = 5/2 and b is 
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Experiments on toner particles mixed with carrier beads 
showed that impaction was dependent on square of the flow 
velocity 

In a recent patented work by Hamby et al., a method for 
sensing toner concentration in a developer housing was found for 

compensating optical measurements of toner concentration for 
toner impaction. The method involved sensing the light reflected 
of the developer material with optical system and getting toner 
concentration from the reflected light off the developer material 
[21]. Experimental results showed that toner impaction (mg/g) is 
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Figure 3 – shows toner impaction is dependent  on the square of flow velocity 

correlated to carrier age in thousands of prints.  Increasing toner 
hardness, decreasing toner size and lowering of flow velocity 
would result in reduction of toner impaction and increase in carrier 
age. 

CONCLUSION 
Analytical and numerical models for toner (particle) 

impaction are considered. The models predict dependence on 
coefficient of restitution, hardness and pressure. Impaction of toner 
(particle) aggregates is consistent with experimental data on 
particle radius. 
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