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Abstract

Developer roll design variables including roll compliance,
coating hardness, and topography were evaluated relative to toner
filming and photoconductor (OPC) wear; two common end of life
Sailure modes in contact development laser printer systems. It was
Sfound that reduced coating hardness offered the greatest potential
for minimizing toner filming. With respect to OPC wear, trends
indicate that both overall developer roll compliance and
topography can influence the usable life of the photoconductor;
with softer rolls and a peaked topography preferred.

Introduction

Trends towards increased page yields and reduced cost per
page in the laser printer marketplace have driven a shift from
cartridge-based architectures towards printers with semi-permanent
developer units. As a result, it has become increasingly important
to extend the usable life of electrophotographic (EP) components
such as the photoconductor (OPC), doctor blade, and developer
roll. In contact development systems, the primary end of life
failure modes for these components include OPC wear and toner
filming, both of which can be strongly correlated to developer roll
design. Yet it remains unclear exactly which factors in roll
construction have the greatest impact on failure. In this work,
overall developer roll compliance, surface (coating) hardness, and
topography were considered; examining the influence of each
independently on toner filming and OPC wear in an effort to
improve our understanding of optimal developer roll design.

For the purposes of this study, 2-layer developer rolls were
examined in non-magnetic single-component laser printer systems.
They were comprised of thick (4-6mm) semi-conductive (10*108
Q-cm) elastomeric cores molded onto conductive metal shafts. To
the surface of each core, a thin (50-100 pm) elastomeric coating of
higher resistivity (10'°-10'> Q-cm) was applied.

As the thickest layer, core compliance is a primary factor in
determining the overall hardness of the finished developer roll. To
create rolls of varying hardness, three different core resins with
durometer hardness ranging from 40 to 70 Shore A were used
(Table 1). Although the chemical composition of each core was
quite different, the impact of those differences on toner filming or
OPC wear should be minimal because, after coating, the core does
not interact directly with the toner or other printer components.

Table 1: Core Selection

Core Designation Hardness (Shore A)
1 66
2 46
3 41

The same cannot be said, however, for the developer roll
coating. Material-based properties such as surface tack, coefficient
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of friction, and abrasiveness can significantly alter roll function as
it relates to toner filming and/or OPC wear. In an effort to isolate
surface hardness as a test factor, it was therefore necessary to
create coatings of varying hardness while maintaining a consistent
chemical composition. This was accomplished using a mixture of
branched and linear curatives in a polyester-based polyurethane
coating. By varying the ratio of branched:linear materials it was
possible to vary the cross-link density of the elastomer and, thus,
its hardness with minimal alteration of the overall chemical
composition of the coating. The hardness of each coating was
estimated using independently prepared thin-film samples and a
Shore M durometer. The results are listed in Table 2 for reference.

Table 2: Coating Hardness

Coating Designation Hardness (Shore M)
A 77
B 71
C 69
B) 65

Surface texture is another key aspect in developer roll
construction; most often used as a knob to control toner mass and
charge. It is generally quantified in terms of roughness (Ra and/or
Rz), but such numerical specifications do not offer a complete
description of roll topography. It is possible to create rolls of
similar roughness using different combinations of fillers, molding,
or grinding techniques affording very different landscapes on the
surface of a developer roll. Figure 1 shows SEM images of three

developer roll surfaces with different topographies commonly
found in commercial systems today; namely grooved (X), pitted
(Y), and peaked (Z). All three textures were examined in relation
to this study.

" A R
Figure 1. SEM images of typical developer roll topographies; (X) Grooved; (Y)
Pitted; (Z) Peaked.

In all, eight developer roll configurations were created to
isolate and vary three different test factors, roll compliance,
surface hardness, and topography to examine their impact on toner
filming and OPC wear. Each roll type was given a unique ID
reflecting its core, coating, and texture components which are
summarized in Table 3. In one case, C2X, data from the same set
of rolls was used in the analysis of multiple test factors.
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Table 3: Experimental Developer Roll Configurations

Roll | Coating Core
ID | (ShoreM) | (ShoreA) Topography | Test Factor
A2X | 77 46 Grooved Surface
Hardness
B2X | 71 46 Grooved Surface
Hardness
cax | 69 46 Grooved Surface
Hardness
D2X | 65 46 Grooved Surface
Hardness
cix| 69 66 Grooved Roll
Compliance
Roll
Cc2X 69 46 Grooved ;
Compliance
Roll
C3X 69 41 Grooved .
Compliance
Cc2X 69 46 Grooved Topography
cay 69 46 Pitted Topography
Cc2z 69 46 Peaked Topography
Experimental
Toner Filming

The effects of long term toner churn were replicated in an
accelerated test using a specialized fixture designed to cycle the
developer roll within a laser printer cartridge in the absence of a
photoconductor, such that the undeveloped toner was constantly
recycled within the cartridge. Low toner loading, 40 g, further
stressed the system to hasten failure. Each experimental developer
roll was built into a new, unused cartridge; then placed into the test
fixture and cycled continuously for 1 hour. Print samples were
generated at the end of the hour and evaluated for the presence of
thin vertical white streaks indicative of toner filming of the doctor
blade. The test was repeated for up to 35 hours or until print
defects related to toner filming were observed at which point the
roll was rated “fail” and removed from test. Results are quantified
in terms of time to film (TTF) reflecting the number of hour-long
cycles required to achieve failure. Each data point represents an
average of three rolls per sample cell.

OPC Wear

Photoconductor wear was tested using a modified laser printer
in which the cleaning and transfer systems had been removed to
minimize non-developer roll contacts on the OPC.  The
photoconductors had a drum-based architecture comprised of OPC
layers coated on an anodized aluminum core. Experimental
developer rolls were built into cartridges and filled with 400 g of
toner. Each roll/cartridge was paired with a new, unused
photoconductor and charge roll; then cycled continuously for the
equivalent of 25,000 pages under an applied white vector to
prevent toner development. The test was paused approximately
every 800 pages to refresh the toner in an effort to minimize
filming. The average thickness of the OPC layers around the
circumference of the drum and along the length of the paper path
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was measured for each pairing before and after test using an eddy-
current tester. Reported wear values are a measure of the change
in OPC thickness, and represent an average of 3-5 developer
roll/OPC pairings per sample cell.

Results and Discussion

Toner Filming

Toner filming results when the toner is broken down due to
the churning action of the development system and repeatedly
passing through high pressure nips between the developer roll and
other cartridge components such as the doctor blade. Over time
extra particulate additives (EPAs) are lost from the surface of the
toner altering its ability to flow and accept or hold a charge. At its
worst, the exposed waxy surface of the toner smears across the
surface of the developer roll forming a film or cakes onto the
doctor blade inhibiting its ability to meter a uniform toner layer.
From a customer perspective, toner filming is manifest in print
defects such as thin vertical white streaks that result from the
scraping action of agglomerated toner masses on the surface of the
doctor blade.

In an effort to understand how developer rolls might be better
designed to reduce the rate of toner breakdown and extend the
usable life of cartridge components, three different aspects of roll
construction were evaluated relative to toner filming. These
included overall roll compliance, surface (coating) hardness, and
topography. End of life failures were quantified in terms of time to
film (TTF) which measures how long, in hours, the development
system can withstand continuous toner churn before the first sign
of print defects related to toner filming of the doctor blade. Each
data point is an average of the results for three tests per cell and
error bars represent + 1.

By far, the strongest correlation was observed for developer
rolls with differing surface hardness (Figure 2). The hardest
coatings (77 Shore M) afforded filming in under 4 hours while a
steady increase in time to film was observed as coating hardness
was decreased. The softest coatings (65 Shore M) yielded a seven-
fold improvement with an average TTF of nearly 28 hours. This
is consistent with the theory that the softer developer roll coatings
act as a cushion for the toner particles as they pass through the
doctor blade nip minimizing toner wear.

TTF vs. Surface Hardness
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Figure 2. Time to film versus developer roll coating hardness: Each data point
is an average of three tests per cell and error bars represent 1. Column
labels indicate the roll configuration ID and coating hardness in Shore M.
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Interestingly, we did not see a similarly strong correlation
when the overall roll compliance was varied. Given the marked
reduction in the rate of toner filming observed when decreasing the
hardness of just the top 50-100 pm of the developer roll, one might
expect an even greater response when the overall hardness of the
roll was reduced. Instead, there was only a slight, statistically
insignificant, trend towards increased TTF with significant
decreases in roll hardness (Figure 3). This may reflect a
competitive balance between the advantage of reduced nip pressure
and the disadvantage of increased nip width relative to toner
working when a softer developer roll is used. Given the relatively
small size of the toner particles (5-10 um), however, it is more
likely that the 50-100 um coating is more than sufficient to fully
cushion the toner; making any additional compliance afforded by a
softer core unnecessary.

TTF vs. Roll Compliance
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Figure 3. Time to film versus overall developer roll compliance: Each data
point is an average of three tests per cell and error bars represent +1c.
Column labels indicate the roll configuration ID and core hardness in Shore A.

Topography also had relatively little impact on time to film
(Figure 4). Grooved and pitted surfaces were statistically
equivalent. There was a decrease observed in TTF for samples
with a peaked topography, but given the strong correlation of TTF
with surface hardness it is difficult to say if this is actually the
result of topography or localized areas of increased surface
hardness due to the fillers required to create the surface texture.

TTF vs. Topography
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Figure 4. Time to film versus developer roll topography: Each data point is an
average of three tests per cell and error bars represent +1c. Column labels
indicate the roll configuration ID and topography.
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OPC Wear

Throughout its life, the topmost organic layer of the
photoconductor is worn by the constant abrasive action of
components such as the cleaner blade, transfer system, developer
roll, and toner. As this layer becomes thinner its ability to charge
uniformly becomes compromised, ultimately resulting in areas of
high background development affording unacceptable print
quality.

Although the developer roll is certainly not a lone actor with
respect to OPC wear, it can be a significant contributor and there
exists an opportunity to improve system performance by better
understanding how different aspects of developer roll construction
impact wear. As above, roll compliance, surface (coating)
hardness, and topography were considered, in this case relative to
OPC wear. Reported wear values are a measure of the change in
OPC thickness before and after test. Each data point is an average
of 3-5 developer roll/OPC pairings per sample cell and error bars
represent + 1.

Unfortunately, the test method was found to be highly
sensitive to the relative fixturing of the developer roll and OPC
within the test apparatus affording a high degree of variability in
measured wear among samples of the same type. In an effort to
compensate, sample sizes were increased from three to five rolls
per cell if the excess parts were available. Although the high level
of variability precludes definitive statistical correlations, the
observed trends may still offer some insight.

There was a trend towards reduced OPC wear as overall roll
hardness was decreased (Figure 5). This is consistent with the
idea that reduced nip pressure between the developer roll and OPC
reduces the abrasive force of the developer roll, thus minimizing
wear.

OPC Wear vs. Roll Compliance
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Figure 5. Change in OPC thickness versus developer roll compliance: Each
data point is an average of 4-5 tests per cell and error bars represent £1c.
Column labels indicate the roll configuration ID and core hardness in Shore A.

Changing the developer roll topography offered similar
reductions in OPC wear (Figure 6). Pitted developer roll surfaces
performed the worst. For this particular topography, the holes
present on the surface of the developer roll create a multitude of
rough edges that run perpendicular to the rotational direction of the
developer roll and OPC like little scoops. It may be that these
edges increased the abrasive action of the developer roll, thus,
increasing OPC wear. A grooved surface texture is also comprised
of numerous edge aspects, but due to the nature in which such
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surfaces were created for the purposes of this study, those edges
lay nearly parallel to the rotational direction of the developer roll
and OPC. As a result, this texture was slightly less abrasive and
less OPC wear was observed. With a peaked surface, rough edges
are eliminated and the contact area between the developer roll and
OPC is minimized affording further wear reduction.

OPC Wear vs. Topography

Average Drum Wear (um)

Figure 6. Change in OPC thickness versus developer roll topography: Each
data point is an average of five tests per cell and error bars represent *1o.
Column labels indicate the roll configuration ID and topography.

There does not appear to be a direct correlation between
surface hardness and OPC wear (Figure 7). Although the data
indicate a significant drop in OPC wear for the hardest coating, this
may result from severe toner filming observed in the earliest stages
of the test which most likely altered the developer roll surface and
toner flow within the system. In the absence of toner filming, wear
results for two softer coatings were statistically equivalent. Further
testing in an un-toned system will be required for clarification.

OPC Wear vs. Surface Hardness
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Figure 7. Change in OPC thickness versus developer coating hardness: Each
data point is an average of 3-5 tests per cell and error bars represent +1c.
Column labels include roll configuration ID and coating hardness in Shore M.
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Summary and Conclusions

Developer roll design variables including roll compliance,
coating hardness, and topography were evaluated relative to toner
filming and OPC wear; two common end of life failure modes in
laser printers with contact development systems. Of those factors
tested, only developer roll coating hardness showed a significant
correlation with toner filming. In an accelerated test, a seven fold
increase in time to film was achieved with a moderate decrease in
coating hardness from 77 to 65 Shore M. With respect to OPC
wear, trends indicate that both overall roll compliance and
topography can be used to reduce wear; with softer rolls and a
peaked topography preferred.

According to these results an optimal developer roll design
would be comprised of a compliant core and soft coating with
peaked topography. Although there was some indication of
increased toner filming with the peaked topography it should be
possible to compensate with a softer coating that strikes the
appropriate balance of properties. In the end, combining all three
factors should significantly extend the usable life of the developer
components affording consumers increased page yield with
reduced interventions throughout the life of their printer.
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