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Abstract 
Nano-sized (e.g., 7nm primary particle size) fumed silica 

particles typically exhibit an ultra-high negative triboelectric 

charge-to-mass ratio (q/m)  when agitated with micron-sized (e.g., 

50 to 100µ diameter) carrier beads.  Micron-sized toner particles 

(e.g. 5 to 9µ diameter) also exhibit an increasingly negative 

charge when fumed silica particles are applied as external 

additives to their surface.   

In this present report, a quantitative analysis of triboelectric 

charging data from mixtures of fumed silica particles and carrier 

beads is presented, based on a mechanistic model for triboelectric 

charge generation.  The model is also used to illustrate the 

connection between the triboelectric charging properties of fumed 

nano-sized silica particles and the charge level of external 

additive micron-sized toners 

Introduction 
Conventional fumed silica particles typically impart a high 

negative polarity to micron-sized toner particles. Since such fumed 

silica particles intrinsically charge to an extremely high negative 

level, the increase in the measured blow-off triboelectric charge of 

surface-additive toner particles might merely reflect independent 

contributions from toner and silica particles.  However, 

complementary charge spectra measurements indicate that the 

intrinsic negative charge level of toner particles is increased when 

nano-sized fumed silica particles are blended onto the surface of 

the toner particles — the toner charge spectrum shows a single 

narrow peak that moves to an increased negative charge level for 

the toner particles that are coated with surface additives [1]. 

Essentially, therefore, fumed silica additives act as particulate 

sources of negative charge  at the toner surface, thereby increasing 

the overall negative charge of the toner particles.  

Theory 
The triboelectric model of Gutman and Hartmann [2] 

provides a useful mechanistic description in terms of both the 

physics and chemistry of charging, and has been successfully used 

to analyze a wide variety of experimental triboelectric charging 

data [2-12]. 

For a stable well-mixed, two-component toner/carrier 

developer mixture, the model indicates that the equilibrium toner 

charge to mass ratio q/m ,  in units of µC/g , will be given by: 

where φtoner and φcarrier  are the characteristic charging energy 

factors for the toner particles and carrier beads, respectively, in 

units of eV, and C is the weight percent toner concentration (i.e.,  

100· (toner weight / carrier weight)). 

 

For any particular xerographic carrier bead, the pre-factor 

constant A′ can be approximated in units of µC.g-1.eV-1 as: 

where R is the carrier bead radius, ρ is the carrier bead density, ε0  

is the permittivity of free space, M is the mass of a carrier bead, e 

is the electronic charge, and d is the tunneling distance for charge 

exchange. 

For any particular toner/carrier pair, C0 is a weight percent 

constant, given approximately by: 

 

where  ρtoner  and  ρcarrier  are the toner and carrier densities in g/cc, 

and rtoner is the toner particle radius.  

Thus, the A′ constant in Equation 1 is a function of carrier 

bead size and density, while the C0 term is a function of the size 

and density of both the carrier beads and toner particles. 

For a two-component xerographic developer based on iron 

carrier beads having a density of 7.8 g/cc and toner particles 

having a density of 1.2 g/cc, Table 1 lists the A′ and C0 values 

calculated from Equations 2 and 3 for typical carrier and toner 

sizes, and Table 2 gives these values for xerographic developers 

based on ferrite carrier beads with a density of 4.98 g/cc. Note that 

ferrite carrier beads are predicted to give higher A′ and C0 values 

than iron carrier beads, for any particular size combination of 

carrier bead and toner particles. 

 

 

              100
R

r
C0 ⋅









⋅ρ

⋅ρ
=

carriercarrier

tonertoner                (3)

                 
Red

3

Med

R4
A 00

2

ρ
ε

=












 επ
=′                  (2)

            ( )
( )carriertoner φ−φ⋅









+

′
=

0CC

A
q/m          (1) 

Carrier 

Dia. (µµµµ) 
A′ 

(µµµµC.g
-1

.eV
-1

) 

C0 

(wt%) 

  9 µµµµ  

toner 

7 µ µ µ µ  
toner 

5 µµµµ 

toner 

100 70 1.4 1.1 0.8 

65 110 2.1 1.7 1.2 

35 200 4.0 3.1 2.2 

 
Table 1.  Calculated A’ and C0 values for xerographic developers based on 

iron carrier beads (ρ=7.8 g/cc) and polyester toner particles (ρ=1.2 g/cc). 
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While the above triboelectric charging model calculations are 

based on conventionally-sized toner/carrier two-component 

xerographic developers, the charging model has general 

applicability.  For example, the model can also be used to analyze 

the triboelectric charging performance of nano-sized particulate 

external toner additives, as illustrated in the following sections of 

this present report. 

Experimental 
A Technical Information Report, TI 1222, published by 

Nippon Aerosil Co., Ltd., lists the physical and triboelectric 

properties of a wide range of hydrophobic fumed silica particles 

[13]. (See also [14 –16] ). 

For the triboelectric charge evaluations listed in the TI 1222 

report, 0.1g samples of fumed silica were mixed in a Turbula mixer 

(e.g., for 30 seconds, at 25oC/45% relative humidity) with 50g of 

iron and ferrite-based carrier beads, and Table 3 lists representative 

results: 

Clearly, the q/m values obtained when fumed silica particles 

are used as “toners” in a two-component xerographic developer are 

one hundred times higher than the q/m values typically generated 

by conventional toner/carrier pairs.  However, since fumed silica 

particles have surface areas of 50 to 300 m2/g (cf. toner particles 

with surface areas of 1 m2/g or less), the fumed silica charge 

behavior is actually not excessive when expressed in terms of 

charge per unit area. For example, a q/m of –30 µC/g for a 7µ 

toner (geometric surface area = 0.7m2/g) translates to about 3.1010 

electrons/cm2, while a q/m value of –1478 µC/g for the R812S 

fumed silica (geometric surface area = 390 m2/g) translates to 

about 2.109 electrons/cm2, and a q/m value of –371 µC/g for the 

RY50 fumed silica (geometric surface area = 70 m2/g) translates to 

about 3.109 electrons/cm2. 

Data Analysis 

Triboelectric Charging of Fumed Silica 
For nano-sized silica particles on micron-sized carrier beads, 

Equation 3 predicts a zero value for the C0 term in Equation 1.  

Therefore, for any individual sample of SiO2, the triboelectric 

charge generated from 0.1g of SiO2 agitated with 50g of iron 

carrier beads will be: 

 

Similarly, for the same SiO2 sample, the triboelectric charge 

generated from 0.1g of SiO2 agitated with 50g of ferrite carrier 

beads will be: 

Eliminating the φsilica term from between these two equations, 

yields: 

Figure 1, (see next page) is a plot of ferrite-charged versus iron-

charged q/m values for each individual SiO2 sample listed in Table 

3, and the zero intercept value indicates that φferrite = φsteel  for the 

data set.  As a result, 
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65 170 3.3 2.6 1.9 

35 315 6.2 4.8 3.4 

 
Table 2.  Calculated A’ and C0 values for xerographic developers based on 

ferrite carrier beads (ρ=4.98 g/cc) and polyester toner particles (ρ=1.2 g/cc). 

 

 

#  AEROSIL
® 

 

grade 

q/m  

iron  

(µµµµC/g) 

q/m  

ferrite  

(µµµµC/g) 

Surf. 

Ctg. 

 

size 

(nm) 

1 R972 -1340 -857 DDS 16 

2 R974 -1351 -825 DDS 12 

3 RY50 -371 -253 DMPS 40 

4 NY50 -867 -526 DMPS 30 

5 RY200S -1266 -951 DMPS 16 

6 RY200 -1079 -668 DMPS 12 

7 R202 -1518 -1041 DMPS 16 

8 RX50 -838 -516 HMDS 40 

9 NAX50 -1109 -781 HMDS 30 

10 RX200 -1434 -796 HMDS 12 

11 R8200 -839 -393 HMDS 12 

12 RX300 -1450 -892 HMDS 7 

13 R812 -1651 -1203 HMDS 7 

14 R812S -1478 -905 HMDS 7 

15 R805 -1145 -653 RS 12 

16 R104 -1373 -657 D4 12 

17 R106 -1530 -794 D4 7 

Table 3.  Experimental triboelectric charge values for a range of fumed 

silicas charged against iron and ferrite-based carrier beads (data from 

report  TI 1222). The surface treatments are:  

DDS = dimethyldichlorosilane;    DMPS = dimethylpolysiloxane; 

 HMDS = hexamethyldisilazane;   RS = alkylsilane;  

D4 = octamethylcyclotetrasiloxane 
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With assumed values of  ρiron = 7.8 g/cc and ρferrite = 4.98 

g/cc, a slope value of 0.644 for the data plot indicates a Riron/Rferrite  

ratio of 0.41, i.e., if the test iron carrier has a diameter of 50µ then 

the test ferrite carrier diameter (assuming equivalent spherical 

morphology) is predicted to be 122µ.  (The predicted carrier size 

ratio, of course, is dependent on the assumed carrier density values 

— for a low density atomized or sponge iron carrier/ferrite carrier 

combination, the predicted size ratio will be closer to 1).   

In general, for comparison with experimental SiO2:carrier 

triboelectric charging data, Equations 4 and 5 cannot provide a 

unique theoretical prediction for q/m since they contain two 

unknown factors, namely φsilica and  φcarrier .  However, as shown in 

Table 3, R812S generates an exceptionally high negative charge, 

and it is therefore convenient to assign a reference value of 0 eV to  

φR812S, so that factors such as  φcarrier  and  φsilica  can be deduced 

from experimental q/m values. 

For example, based on an assumed reference value of 0 eV for 

φR812S , and an experimentally-determined q/m of –1478 µC/g for a 

0.2wt% mixture of R812S and a 50µ iron carrier: 

 

 

which yields  φ iron  = 2.1 eV. 

 

 

Similarly, from a q/m of –905 µC/g, determined 

experimentally for a 0.2wt% mixture of R812S and a 122µ ferrite 

carrier: 

 

which yields φferrite  = 2.0 eV. 

Accordingly, φcarrier = 2 eV can be used for the entire present 

experimental data set (coupled with assumed carrier sizes of 50 

and 122µ, and 7.8 and 4.98g/cc densities). 

Triboelectric Charging of Toners with External 
Additives 

For toners coated with external particulate additives such as 

fumed silica, the φtoner term in Equation 1 can be expressed in 

terms of area-weighted contributions from the base toner material 

and from the external additive coating [3-4]. For a fractional 

additive coverage, Ө, the φtoner term becomes: 

where  µsilica and  µbase toner are characteristic charging factors for 

the respective surface types. 
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Figure 1. Ferrite-charged versus iron-charged q/m values for each individual SiO2 sample listed in Table 3.  

The number labels correspond to the sample numbers listed in Table 3. 
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For toners based on external additives, then, Equation 1 

becomes: 

If µsilica < µbase toner, then the surface additive will reduce the 

φtoner term, thereby changing q/m to a more negative value. 

For a toner coated with a monolayer of SiO2 additive, 

Equation 9  becomes: 

For the case of a toner totally coated with a highly-negative 

SiO2 such as R812S, the q/m value can be used to deduce φcarrier  , 

using µR812S  = 0 eV as a defined reference value.  (Note: while this 

is the same strategy as that used in the analysis of the silica/carrier 

charging data set, the (C + C0) term in Equation 10 will reduce the 

q/m value for the additive-coated toner greatly below that given by 

an equivalent silica/carrier pair). 

Using the deduced value for φcarrier obtained from an external 

additive toner/carrier test, the q/m value of base additive-free toner 

particles mixed with carrier beads can then be used to deduce a 

value for µbase toner : 

 

so that: 

For 7µ toner particles triboelectrically charged against 50µ 

iron carrier beads at a 3wt% toner concentration, typical 

parameters are: 

A′  = 140  µC.g-1.eV-1      C0 = 2.2 wt%      C = 3 wt% 

φtoner  =  1.5 eV       φcarrier  = 2.0 eV 

 

and q/m for the additive-free toner particles becomes: 

 

By contrast, if a monolayer of highly-negative SiO2 (e.g. 

R812S) is applied to the toner particles, then φtoner  =  0 eV, and the 

q/m value of the surface-treated toner particles becomes: 

i.e., the negative toner charge is  increased by a factor of 4. 

Unfortunately, the above strategy for increasing the negative 

charge level of a toner can lead to an unstable loss of charge.  For 

example, mechanical stresses in a xerographic development 

module can lead to a usage-induced “burial” of particulate external 

additives into the sub-surface of toner particles, and thereby 

produce a reduction in the overall triboelectric charging ability of 

toner particles (effectively, the toner charge properties decline 

towards that of the base toner).   This can be a particularly critical 

problem for high-speed xerographic printers, where the toner 

residence time in the development module can vary widely in 

response to the type of image being printed  — a transition from 

long-term text prints to full-pictorial prints can be a stress 

condition, with unaged dispensed toner being abruptly added to a 

developer that contains “aged” toner.  Typically, usage-induced 

“loss” of toner surface additives is a first-order kinetic process, so 

that the highest rate of additive loss occurs during the initial time 

of toner “aging”, i.e., at any toner “aging” time t, the effective 

additive surface coverage Өt will be given by: 

where  Ө0 is the time-zero additive coverage, F is the long-term 

fractional loss of additive and k is the rate constant for the loss 

process. 

As shown in Equation 8, the effect of additive “loss” on q/m 

can be minimized via a reduction in the  mismatch between the 

µsilica and µbase toner values.  For example, the data in Table 3 

indicate that the RY50 fumed silica is less triboectrically-active 

than the highly negative R812S silica.  In terms of µsilica, the 

deduced value for µRY50 is 1.46 eV, based on an assumed value of 0 

eV for  µR812S .   

 Accordingly, for   7µ toner particles charged against a 50µ 

iron carrier at a 3 wt% toner concentration: 

for toner particles coated with a monolayer of RY50 silica, and 

this value is close to the –13.5 µC/g predicted for an additive-free 

toner. 

Similarly, for 7µ toner particles charged against a 122µ ferrite 

carrier at a 3 wt% toner concentration: 

 

for toner particles coated with a monolayer of RY50 silica, and 

this is close to the –10.3 µC/g value predicted for additive-free 

toner. 

As evident from the above calculations, the choice of SiO2-

type can greatly affect the overall triboelectric charge level and 

charge stability of toner particles based on external additives.  It 

must be noted, however, that the present results are not universally 

applicable. For example, toner charge enhancement created via 

external additives is governed by the surface coverage Ө of any 

particular additive and by the term (µsilica - µbase toner ). Accordingly, 
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a change in the value of µbase toner  (e.g., via a change in the toner 

binder-resin type, in colorant type or level, or by the addition of an 

internal charge control agent) can also affect the triboelectric 

charge level and charge stability of a toner based on an external 

additive.  Likewise, extrinsic effects such as a change in the 

ambient humidity may also affect toner charging by altering the 

values of key intrinsic xerographic developer properties such as 

µsilica, φbase toner  and  φcarrier . 

In general, of course, an external toner additive can be applied 

at a sub-monolayer coverage, in order to reduce the overall toner 

charge level and the absolute magnitude of any usage-induced 

decrease in charging performance. In this regard, since the primary 

particle size of the RY50 silica is 40 nm and is 7 nm for the R812S 

silica, a monolayer of these silicas on a 7µ toner particle will 

require an additive level of 3.8 wt% and 0.67 wt%, respectively. 

Finally, a stable external additive toner based on the highly-

negative R812S silica can be achieved if the base toner is highly-

negative.  For example, if  µbase toner  is set at 0.1 eV (e.g., via the 

addition of a negative charge control agent to the toner bulk), then 

the q/m value for 7µ toner particles charged against a 50µ iron 

carrier at a 3 wt% toner concentration will be: 

for base toner particles, and this value is close to the –54 µC/g 

predicted for toner particles coated with a monolayer of R812S 

silica.  For this highly-negative toner, therefore, q/m will be 

maintained even if there is a usage-induced “loss” of surface SiO2.   

Similarly, a high value of toner q/m created via an increased 

value for µcarrier   — e.g., via the use of a N- based carrier coating 

— will partially stabilize toner q/m by moderating the effect of the 

Ө, µbase toner and µsilica terms on the expression: 

(Ө ·(µsilica - µbase toner) + µbase toner - µcarrier) 

  

 

Conclusion 
As demonstrated in this present report, a simple mechanistic 

model for the triboelectrification of a two-component xerographic 

developer can provide an internally-consistent, quantitative 

analysis of the effect of external additives on toner charging.  

Beyond the experimental data cited in this present report, the 

model is applicable to a wide range of toner charging processes, 

and could be profitably used to provide a quantitative analysis of 

the many qualitative experimental studies that are presented at NIP 

conferences. 
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