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Abstract 
Compression set of a material is critical in fusing system 

applications and is therefore desired to be as low as possible, less 
than 10%. Greater compression set introduces issues of loss of nip 
over time and elevated temperatures, adversely affecting the 
performance. With very soft materials, such as foam rubbers, 
compression set can be much greater than 20%. Tensile strength 
and elongation of materials are values that indicate the strength of 
a material under pressure in the fusing nip. Accordingly, a 
material with higher tensile strength and elongation is preferred. 
The hardness or softness of a pressure roller is dependent upon the 
base rubber material. Critical physical parameters of the material 
chosen are the hardness, compression set, elongation, tensile 
strength and dynamic responses under temperature and pressure. 

This paper describes the evaluation of a silicone, non foam, 
rubber material with a softness of 15 Asker C and a compression 
set 8% or less, as applied to differing material thickness for 
pressure roller applications. Physical and dynamic properties of 
the super soft silicone rubber are compared against other rubber 
materials used in pressure roller applications. 

Introduction 
The design of pressure rollers, [1,2] used in nip forming 

fusing systems employ a single polymer material on a core or 
multiple layer configurations. Often fluoropolymer sleeves are 
bonded to a material for enhanced toner release or wear resistance. 
When a roller is designed using multiple layers of different 
polymers, the total hardness, or composite hardness, is a measure 
of the deformation capability of the roller under pressure. Selection 
of base materials are chosen from silicone, or fluorocarbon 
elastomer polymers. Furthermore, foam structures may be utilized, 
often to achieve a lower composite hardness. The most common 
polymers are classified as a high consistence elastomer (HCR), a 
liquid injection material (LIM), a room temperature vulcanized 
elastomer (RTV), or a foam version of each that incorporates air 
pockets or voids. 

To achieve a roller of very low hardness, physical properties 
of materials, such as compression set are often compromised, thus 
contributing to failure modes which affect the performance or life 
of the roller in a fusing system environment. Compression set of a 
material is critical and is desired to be as low as possible, less than 
10%. This is one of the issues associated with foam materials, 
which can have compression set as high as 50%, but which are 
often a choice for low hardness pressure rollers. Tensile strength 
and elongation of materials are values that indicate the strength of 
a material under pressure in the fusing nip. Accordingly, a material 
with higher tensile strength and elongation is preferred. 

Dynamic properties testing of materials, such as Dynamic 
Modulus Analysis (DMA) is a test which indicates the stability of 
a material to continuous deformation.  In this study we employed 

DMA analysis in addition to Hardness, Compression, Tensile and 
Elongation to evaluate the physical properties of a “super soft” 
LIM silicone rubber for application in fusing systems requiring a 
very soft pressure roller.  

Discussion 
The 15 Asker C material is a LIM silicone with a the unique 

property of very low compression set at elevated temperatures of 
350F, making it suitable for fuser and pressure roller applications. 
Table 1 lists the initial physical properties and aged physical 
properties. Physical property measurements were carried out on a 
Shimadzu Rubber Tensile tester (model AGS-H; Autograph) for 
the determination of Tensile Strength (TS), Elongation at Break 
(EB%). Compression set was measured according to ASTM D396-
97. [3] 

Table 1. Physical Properties of Soft Rubber 
Hardness, Shore A 4
Hardness, Asker C 15 
Tensile, psi 163 
Elongation, % 440 
Compression Set, % (22hrs@350°F) 5.3
Tear 20 
Abrasion Index (500g load) 0.015 
Extractable Substances, % 49 
Volume Change in Silicone Oil,% @ 300°F 16 
  

Aging Properties  (72 hrs @ 300°F)  
Hardness, Shore A 5 
Hardness, Asker C 18 
Tensile, psi 142 
Elongation, % 330 

Compression set testing of a sample is accomplished by 
compressing a 25 mm height sample to 75% of that height and 
keeping it in compression for 24 hours at 350°F under protocol of 
ASTM D395 [3]. The material is then allowed to recover without 
any compression for 1 hour where upon the thickness is measured 
and compression set, in percent, is calculated. Table 2 compares 
the soft LIM rubber with two samples of sponge rubber material. 

Table 2. Compression Set Compared 

Material 24hrs@ 350°F 

soft LIM rubber 5% 

Matl. grade AD24 23% 

Matl. grade AD33 29% 
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Dynamic Mechanical Analysis, DMA, was conducted on the 
15 Asker C LIM silicone rubber and 3 other LIM silicone rubbers 
that are currently utilized in pressure roller applications. Dynamic 
Mechanical Analysis was carried out using a Visco Analyzer 2000 
DMA150 in compression mode at 25°C and 150°C. Storage and 
Loss Modulus were tested for each material over a frequency 
sweep 10 to 100 radians per second. Storage (E’) and Loss 
Modulus (E”) were measured and the Tan Delta calculated. Figure 
1 shows the Tan Delta of the super soft rubber compared against 3 
other rubbers of different hardness. The tan delta (tan δ) of a 
material is defined at the ration of the loss modulus (E”) and the 
storage modulus (E’), and is a measure of the damping ability of 
the material when subjected to a sinusoidal deformation. The lower 
the tan delta is at elevated temperatures, the more thermally stable 
the material is. Accordingly, materials with a lower tan delta are 
generally a better choice. At room temperature the “super soft” 17 
Asker C rubber has a tan delta comparable to the other rubbers, but 
at operational temperature of 150° C, the tan delta is consistently 
lower than the other silicone rubber materials tested. Because of 
the physical make up of foam with air pockets and voids, DMA 
testing is not applicable and therefore not compared. 
 

 
Figure 1. DMA Tan delta vs frequency .  

A selection of materials were analyzed against a very soft 
LIM silicone rubber, with a softness of 15 Asker C. The materials 
selected were silicone rubbers and silicone foam rubber with 
hardness from 60 Shore A and below. Rollers were made with each 
of the materials and the composite hardness were compared ad 
well has the force needed to form a 10 mm wide nip. The pressure 
rollers made from each of the selected materials had the same final 
diameter but the wall thickness was varied ranging from 2.5 mm to 
12.5 mm thickness. Each of the rollers contained an aluminum core 
and a base layer of rubber. In each of the wall thickness selections, 
rollers were made with top coatings of either a 40 micron thick 
PFA sleeve, or a 40 micron thick silicone release layer, or with no 
top coating at all. Each of the rollers were measured for composite 
hardness and the stress necessary to form a 10 mm NIP was 
evaluated. For this evaluation an aluminum indenter was made to 
use with a Tens meter to apply and to measure the force (lbf) 
applied to the roller. The length of the indenter was the same as the 
length of each roller, 230 mm. The width of the indenter was 10 

mm. The indenter was mounted to the Shimadzu Rubber Tensile 
tester and impressed upon each roller to a depth of 1 mm. The 
stress (psi) applied to the rubber is calculated as the force (lbf) 
divided by the area of the indenter, 3.56 inches squared. Table 3 
compares the composite hardness, and the force & stress needed to 
create a 10 mm NIP in. Table 3 is a sample of data collected from 
35 rollers that were made and tested for this evaluation. 

Table 3. Roller Hardness and NIP Formation Compared 

Wall 
Thickness 
mm

Sleeve 

Thickness 

Composite 
Hardness 

Force for 
10mm NIP 
lbf 

Stress 
applied 

2.5 40 53 115 32 

2.5 no sleeve 33 76 21 

2.5 40u coat 32 75 21 

5.5 40 43 52 14 

5.5 no sleeve 22 34 9.5 

5.5 40u coat 31 29 8.2 

10 40 35 14 4 

10 np sleeve 22 12 3.4 

12.5 40 30 10.5 3 

12.5 no sleeve 18 6 1.7 

A foam roller with a wall thickness of 2.5 mm and a 40 
micron PFA sleeve top coat has a composite hardness of 50 Asker 
C. The force applied to the foam roller was 44 lbf with a stress of 
12 psi. While the solid silicone rubber rolls with the same 2.5 mm 
thickness and a 40u sleeve had similar composite hardness, the 
force and stress were more than double to achieve the 10 mm NIP. 
That is simply explained in that a solid is being compressed vs air. 
The advantage again for printer functionality is the compression 
set under load and temperature. 

       Figure 4 shows the force applied to the rubber rollers to 
form a 10 mm NIP as a function of material thickness, mm, on the 
roller as given in table 3. 
 

 
Figure2. Plot of the stress applied to roller to form a 10 mm nip . 
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Conclusion 
The LIM silicone rubber described has a very low 

compression set at elevated temperatures while maintaining good 
physical and dynamic properties for applications in wide nip 
forming pressure roller. While not as “soft” as foam used in similar 
applications for a given thickness of material, the 15 Asker C 
silicone rubber has a significantly lower compression set as well as 
the physical properties of a real rubber. The dynamic properties 
have excellent response at 150° C, similar to those higher hardness 
rubbers currently used in pressure roller fusing applications. Use of 
this LIM silicone material for a fusing pressure roller applications 
[5] in color printers, where softness and large nip formation is 
desired, is a viable contender for further product evaluation. 
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