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Abstract 
Very high speed electrophotographic printers often use a 

fusing system consisting of a fuser roller and associated drive 
mechanisms which employ a coupled drive hub assembly. The 
fuser roller typically includes a metal core onto or into which a 
mating drive hub and collar assembly are connected. Rotating at 
high rotational speed, and at high temperature, with extremely fast 
start/stop conditions, instabilities create issues between the 
contacting surfaces causing micro machining issues which 
eventually develop failure modes of the apparatus.  Such is the 
case in the drive system employed in printers using a drive key and 
drive slot configuration. The thermal expansion of the aluminum 
core differs significantly from the thermal expansion of the steel 
drive hub causing loss of contact between the mating surfaces. 
Micro machining occurring between the steel drive key and the 
aluminum core slot, widens and weakens the drive slot causing 
eventual failure of the roller and drive hub, sometimes 
catastrophic.  

  The design of the fuser core and the drive collar assembly 
has undergone development that takes into account the differing 
thermal expansion of the aluminum fuser core and the steel drive 
hub. The development has been furthered by a unique design which 
incorporates a self locking and self centering drive mechanism, 
along with a rubber interface design, again taking into account for 
the thermal expansion of aluminum and elimination of the drive 
key and slot, to address the failure mechanism of the previous 
designs. This mechanism absorbs the shock energy of the fast start 
– stop motion,  dissipating the energy over the full surface 
diameter of the drive hub.  This paper describes the design history, 
the associated failure modes, and the new and novel solution.  

Introduction 
High speed electrophotographic digital laser printers utilize a 

fuser roller and a mating pressure roller, rotating at high speed, to 
fuse the toner to a substrate.  As the media passes between the 
fuser roller and the pressure roller, the toner is fused to the media 
through a process using pressure and heat exceeding 180° C. The 
interference area between the fuser roller and the pressure roller, 
referred to as the nip, is desirable to maintain a substantially 
uniform pressure. Non-uniform pressure, due to wobble and chatter 
may result in degraded print quality and wrinkled print media. 
Non-uniform contact in the drive mechanism of the rollers may 
result in destructive consequences during high speed, start stop 
operating conditions. As a result, the various fusing assembly 
components should preferably be mated to close tolerances at room 
temperature and remain close at operating temperatures of 200°C, 
with the expansion of different components. 

 The fuser roller typically includes a metal core made of 
aluminum and a polymer coating applied to the surface.  The 
mating fusing assembly of the printer includes hub and collar 

coupled to the drive mechanism. The fusing drive assembly 
components are commonly fabricated of a steel alloy and may also 
include drive members such as a steel key.  In the original design a 
plastic collar is placed between the steel drive hub and the 
aluminum fuser roller.  As the fuser components heat from ambient 
temperature to operating temperatures exceeding 180° C, the 
components of the fusing assembly expand in relation to their 
respective coefficients of thermal expansion.  The thermal 
expansion of the aluminum roller core is significantly larger than 
the thermal expansion of the steel hub components.  The thermal 
expansion of the plastic collar is significantly less than the thermal 
expansion of both the aluminum roller core and the steel hub 
components and therefore provides no mating compliance at 
operating temperatures. Over the life of the product, destructive 
micro machining and cracking occurs in the fuser roller and in the 
steel drive keys. Therefore, a system and method for addressing 
these design issues and problems is needed.   

Discussion and Results 
The objective of design and development of a new fuser and 

drive hub system is to provide an apparatus that will reduce the 
fuser roll and hub/collar assembly wear and breakage over the life 
of the fuser roller at operating temperatures.  The design criteria of 
the system is to compensate for the differences in the thermal 
expansion between different materials from which the fusing 
members are composed, thus reducing the micro machining wear 
and cracking due to the high speed start-stop operating conditions. 

Figure 1 shows the destructive micro machining of the drive 
slot of the aluminum core and the steel drive key of the original 
drive system design. The constant wear caused by high speed starts 
and stops and the small vibrations of the components during steady 
printing produce a failure mode of the fuser roller before the actual 
printing surface the fuser roller has reached its life expectancy.  
 

 
Figure 1. Excessive drive slot wear of fuser roller core.  

The new designs and development of the fuser roller and 
drive assembly were evolved over a period of several years. The 
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initial design incorporated modified components based upon the 
original design. The latest design broke from the original drive 
design to a unique mechanism incorporating the drive dynamics 
with the temperature expansion compensation of the initial hub 
design. 

The original OEM design [1] of the fuser and drive hub 
assembly, mounts the stainless steel hub into the inner diameter of 
the aluminum core. A single drive key on the front and rear hubs 
mate with drive key slots machined into the front and rear of the 
fuser core. A plastic ring is placed between the two mating 
surfaces of the hub and core. At operating temperature of 200 ºC 
the aluminum core increased in diameter about 200 microns, while 
the stainless steel drive hub expands less than 10 microns, and the 
plastic ring not at all. To compensate for the expansion differences 
between the aluminum core at 200ºC and the stainless steel hub, a 
fluoropolymer rubber (FKM), with expansion conditions similar to 
the aluminum, is molded onto the steel hubs that mate with each 
side of the fuser roller. The rubber then expands with the fuser core 
as it heats, thus forming a full contact mating surface between the 
core and the hub, [2].  Thermal mechanical analysis (TMA), 
performed under ASTM E 831-05 conditions using Perkin Elmer 
Series 7 DMA/TMA instrumentation, showed a 3.6% increase in 
thickness at 200 ºC from 25ºC. The plastic collar is eliminated 
from the system. 

The drive key and drive slot wear, due to micro machining at 
operating speeds, and the impact of sudden stop and starts, also 
needed to be considered in the evolution of the system. To help 
compensate a second drive key was added to the rear hub and the 
rear of the fuser roller core. All the drive slots on the fuser roller 
were then reinforced with steel brackets.  Figure 2 shows the hub 
fuser system.  
 
 

 
Figure 2. FKM rubber Hub and fuser core assembly. 

The results of the rubber hub and fuser assembly with two 
drive keys were that the cracking of the fuser roller core, causing 
life failure, was eliminated, and the overall life of the fuser roller 
was increased by 20%. The life of the hub more than doubled 
because the steel drive keys do not wear as quickly. Still though, 
micro machining issues between the drive slots in the fuser roller  
and the steel drive key on the hub persisted. Though reduced in 
severity, and improved life of the drive hub over the original 

system, it remained the item to improve the life of the products 
even further. The next iteration deviated dramatically in design, by 
eliminating the drive key and drive slot all together. 

Keyless Hub and Fuser 
The concept of eliminating the drive key and drive slot design 

was accomplished by employing a “ratchet type” design geometry 
surface profile on the outside diameter of the hub and a mating 
geometry on the inside diameter of the fuser core. The geometry is 
defined by at least two opposite circular arcs, 180 degrees apart. 
Each opposing arc is a portion of a circle whereby the center of the 
circle is offset an equal but opposite distance from the center of the 
minor circle. The distance from the center of the minor circle 
defines the height or depth of the arc, depending upon if the arcs 
are inscribed on an exterior or interior surface, [3].  Figure 3 shows 
the defining arc concept. The center of circle A is a distance x from 
the center of circle C and circle B, an equal distance x from the 
center of circle C. The centers of A and B and C align along a 
straight line. The Arcs a and b, formed by portions of the opposing 
circles, define the geometric profile of the system and the height or 
depth of the surface profile. 

 
Figure 3. Arcs formed by offset circles, defining the geometric shape of the 
keyless hub and mating fuser core. 

Figure 4 shows the surface geometry of the hub exterior 
profile. The exterior of the hub mates with the equal but opposite 
interior geometry of the fuser core. The system self locks as the 
two surfaces rotate into each other. As the printer drive starts, the 
drive side (rear) locks to a point where it will not move. The idle 
side of the roller, front side with a bearing, has a surface profile 
which is in the opposite direction of the rear hub and core to 
compensate for momentum. The rear motor drive of the system 
stops suddenly but the rotational momentum of the fuser core with 
the front bearing wants to keep rotating. In the original OEM drive 
key system this sudden stop of the fuser roller momentum is the 
major cause of core cracking and key/slot failure. In the “ratchet” 
concept, that forward momentum further locks the fuser roller to 
the front hub while keeping the rear hub locked in place, thus 
eliminating issues seen with the key/slot design. The high forces 
exerted at start and stop are compensated for in this design and 
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lock the fuser roller into place with the hubs. The opposing forces 
of start and stop on the front and rear of the fuser core are not 
sufficient to unlock the mechanism, thus allowing for a hub core 
system which does not chatter and does not crack or wear surfaces. 
 

 
Figure 4. Surface profile of outer diameter of the hub. 

To compensate for the expansion differences between the 
aluminum core and the steel hubs, a fluoropolymer rubber is 
molded to the steel hub, as in the keyed hubs described. The rubber 
is precisely molded to the geometry necessary to mate with the 
fuser roller. As the temperature of the fuser roller increases to 
operating temperature, the rubber expands in similar fashion, thus 
maintaining contact between the two surfaces, [1,2]. Figure 5 
shows the mating surfaces of the keyless hub and core system with 
FKM rubber (dark colored portion) molded onto the outer diameter 
of the hub. 
 

 
Figure 5. Mating Surfaces of keyless hub and fuser core.   

The life of the fuser roller is then left to the effects of 
interaction between the surface of the roller, the toner and the 
paper. The fuser failures due to slot wear are eliminated as are the 
machining wear of the keys on the hubs. The removal of the locked 
hubs from the fuser core is simply achieved by a screw driver that 
is placed in a slot between the hub and the core. Applying a 
downward pressure on the screw driver lifts the hub away from the 
core and is easily separated from the core. 

Conclusion 
The original design of the fuser roller drive system employed 

a single key on the rear drive hub and a single key on the idle front 
hub with corresponding drive slots on the fuser roller. The issues 
with high speed start and stop forces and micro machining of the 
drive key and drive slots caused early failure of the fuser roller and 
the hubs. The addition of two keys on the rear drive hub, and two 
drive slots on fuser core, were to distribute the drive forces. The 
addition of the rubber to compensate for the differences in thermal 
expansion of two different materials, significantly increased life of 
both the fuser roller and the hubs. Though the cracking of the fuser 
core was eliminated in this design, the micro machining, though 
much reduced, of the steel drive key and the fuser core drive slots, 
still remained an issue to overcome. The elimination of the drive 
keys and drive slots was the resultant design. Designing and 
employing a geometry that utilizes the rotational momentum forces 
of the drive system, locks the two mating surfaces of the hubs and 
the fuser roller into place. The rotational momentum which caused 
cracking of the core and and the micro machining of the drive slot 
and drive key is then eliminated. The fluoropolymer, FKM, rubber 
interface expands with temperature to keep a tight surface contact 
between the aluminum fuser roller and the steel hubs, eliminating 
the gap between the two surfaces at 200 ºC and the resultant 
destructive failure issues associated with non mating parts at high 
temperature. 
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