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Abstract 
A simulation method to predict a fuser performance is 

presented. It is based on the 2D thermal analysis using Comsol 

software. The analysis model consists of a 2 roll-type IH fuser and 

paper with toner on it. A sequence of warm-up, print, ready, and 

warm-up again is simulated. The warm-up time to print, print 

power, ready temperature, ready power, and FCOT (first copy out 

time) are estimated. Based on the analysis results the TEC (typical 

electricity consumption) is estimated for the fuser. The estimated 

fuser performance is compared to the measured data from the 

fuser jig test. 

Introduction 
Numerical simulations are widely used to design the 

electrophotograhy process in laser printers[1]. The fixing process 

requires minimal energy consumption with high heating speed, 

which are represented by TEC and WUT (warm-up time), 

respectively. An effective simulation method is necessary. 

In this paper a simple 2D analysis method is presented to 

simulate the fusing process which includes warm-up, print, ready 

and warm-up again. The print warm-up time and TEC by 

simulation are compared to the jig test results for the validity of the 

simulation. 

Simulation Method 

Analysis Fuser Model 
A schematic cross-sectional structure of the analysis fuser 

model is shown in Figure 1. The inductor above the heat roller 

(HR) is not shown. The diameters of the heat roller and pressure 

roller (PR) are about 40 mm. The heat roller consists of solid Al 

shaft, sponge, Ni, silicone rubber, PFA layers. The pressure roller 

consists of steel pipe, silicone rubber, PFA layers. By the Joule 

heat due to the eddy current, the Ni layer area below the exciting 

coil is heated. The paper and toner thickness are taken as 0.1 mm 

and 20 µm, respectively. The thickness of Ni layer is 40 µm.  The 

analysis fuser model parameters are shown in Table 1. 

Numerical Analysis Model 

Governing Equation 

The fixing process is simulated by the conventional heat 

transfer analysis using Comsol 3.5a[2]. To take into account the 

velocity of the roller and paper/toner, the Eulerian form of 

governing equation is used, i.e., the heat conduction and 

convection through a fluid is formulated  as follows: 
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Figure 1. Structure of the A3 color IH fuser model 

where T, ρ, Cp, u, k, Q denote the temperature (K), density (kg/m3), 

specific heat (J/kg⋅K), velocity field (m/s), thermal conductivity 

(W/m⋅K), heat source (W/m3), respectively. 

Table 1: Analysis model parameters 

Item Value 

Printing speed (ppm) 45 (Letter landscape) 

Paper length (mm) 215.9 (Letter) 

Paper interval (mm) 78.96 

Process speed (mm/s) 221.1 

Power (W) 1300 max. 

Print control temperature (°C) 170 

HR length (mm) 330 

Nip width (mm) 10.8 

Material Property and Boundary Conditions 

Comsol analysis model is shown in Figure 2. Since a thermal 

analysis is concerned, the shape deformation of rollers in the nip 

area is neglected. Instead a dummy area with nip width is 

introduced to consider the heat transfer from heat roller to pressure 

roller, as shown in Figure 2(b). The thermal conductivity of the 

dummy nip area is taken as anisotropic , i.e., kxx = kxy = kyx = 0, kyy 

= 10,000 W/m⋅K. Note that kyy is very high to ensure the thermal 

contact effect between two rollers in the nip. The density and 

specific heat are taken as unities to take small values. When the 

paper is not fed, the toner and paper area in Figure 2(c) take the 

same material properties as the dummy area. When the paper is fed, 

the toner and paper area take their own material properties, and the 

process speed -Vp is applied to the domains. The inlet temperature 

and outlet convective flux boundary conditions are also applied in 

the toner and paper region. 
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Figure 2. Comsol analysis model. (a) Mesh, (b) Mesh in the nip area (c) 

Boundary condition during paper feeding 

The initial temperature of the model is set as 30 °C. The 

convection heat transfer boundary condition is applied along the 

boundary surface: 

 

q = h(Tinf - T). (2) 

 

where q denotes the heat flux through the boundary, h and Tinf 

denote the convection heat transfer coefficient and the ambient 

temperature, respectively, and are taken as 10 W/m2⋅K and 30 °C, 

respectively. 

 

Velocity Field 

Let r = [x, y]T be a position vector of a point P in a rotating 

body and p = [xc, yc]
T be the origin of the rotation center Oc as 

shown in Figure 3. Then the velocity field u of the point P in the 

body can be represented as 

 

u = ωωωω × (r – p) (3.1) 

= [-ω(y – yc), ω(x – xc)]
T. (3.2) 

 

  

 

 

 

 

 

 

 

 

 

Figure 3. Velocity field of a rotating body 

where ωωωω denotes the angular velocity of the body. The velocity 
fields of the heat and pressure rollers can be calculated using eqn 
(3.2) from the printing speed and roller diameters. 

Paper Interval Effect 

Although changing the boundary condition for the paper and 

toner can account for the paper feeding, additional heat is released 

though the convective flux during the paper interval. To 

compensate for the paper interval, additional power is applied in 

the PFA region of the pressure roller as follows: 
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where PPR, P, Lp, Li denote the power applied additionally to the 

pressure roller, the power supplied to heat roller during print, 

paper length, paper interval, respectively. α is a correlation factor, 

taken as 1/2. 

 

 

 

 

 

 

 

 

Figure 4. Paper interval effect 

Simulation Procedure 
The overall analysis consists of the following steps. From 

Step 2, the previous end state is set to the current initial state. 

 

Step 1: Perform a warm-up analysis with full power until the 

sense temperature reaches the print control temperature without 

paper feeding. 

Step 2: Calculate the print power with paper feeding, while 

the sense temperature keeps the print control temperature. The 

paper and toner material properties should be changed to their own 

values and the boundary conditions should be changed as well as 

shown in Figure 2(c). The process speed should be applied also. 

Step 3: Estimate the ready temperature corresponding the 

specified FCOT. 

Step 4: Perform a cold-down analysis with power off and 

without paper feeding until the sense temperature reaches the ready 

temperature. Here the paper and toner material properties should 

be changed to the same as the nip dummy area. The velocity and 

boundary conditions should be changed to the same as Step 1 state. 

Step 5: Calculate the ready power to hold the ready 

temperature. 

Step 6: Perform a 2nd warm-up analysis with full power until 

the sense temperature reaches the control temperature without 

paper feeding. Check the 2nd warm-up time is acceptable 

compared to the specified FCOT. If not acceptable, go to Step 3 

Step 7: Calculate the TEC according to the TEC measurement 

procedure. 

Warm-up Analysis and Print Power Calculation 

A warm-up analysis is performed to with full power for the 

HR sense temperature to reach the print temperature. Table 2 

shows the analysis result. 
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Table 2: Warm-up analysis result 

Item Value 

Print WUT (s) 24.4 

Warm-up temperature (°C) 169.9 

Warm-up speed(°C) 5.7 

 

The paper is fed after print WUT, and the print power is 

calculated to keep the sense temperature after 15 s by changing the 

print power. The calculated power duty is 93.7% of full power, 

corresponding to 1218.1 W. Table 3 shows the analysis result and 

Figure 5 shows the temperature at the HR sense position for 

various power duties. Figure 6 shows the temperature distribution 

at WUT and at the end of print. Figure 7 shows the temperature 

change during warm-up with full power and paper feeding with 

power duty of 96.3%.  

Table 3: Sense temperature according to the print power duty 

Power duty Sense temp. (°C) @WUT + 15 s 

80.0% 155.5 

90.0% 166.1 

93.7% 170.0 

100.0% 176.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Temperature change for different print power duties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                     (b) 

Figure 6. Temperature distribution. (a) at print WUT, (b) at print WUT + 15 s 

with power duty 96.3% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Temperature change during warm-up and paper feeding 

Ready Temperature 

At the end of print, the power is off to enter ready mode, as 

shown in Figure 8. The ready mode temperature and ready power 

duty should be determined so that the fuser should reach the print 

temperature from ready mode within the specified time, FCOT, say 

∆t = 5 s. Since the second warm-up speed is larger than the first 

one, the temperature change ∆T during ∆t = 5 is estimated using 

the warm-up curve as shown in Figure 9. The temperature changes 

at the start and end of warm-up during ∆t = 5 are ∆T1= 61.6 °C and 

∆T2= 13.7 °C, respectively. The mean value is ∆T = 37.6 °C and 

the ready temperature is set to TR = 170 °C - ∆T = 132.4 °C. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Temperature change during warm-up and paper feeding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Temperature changes at the start and end of warm-up during 5 s 
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Cold-down Analysis and Ready Power Calculation 

Since the ready temperature is determined, it is possible to 

calculate the ready power. A cold-down analysis is performed to 

reach the ready temperature, TR = 132.4 °C. Note that the material 

properties, velocity and boundary conditions should be modified as 

stated previously. The analysis result is summarized in Table 4. 

After entering the ready mode the ready power is calculated to 

keep the ready temperature after 15 s by changing the supply 

power. The calculated power duty is 37.5% of full power, 

corresponding to 487.5 W. Table 5 shows the analysis result and 

Figure 10 shows the temperature at the HR sense position for 

various power duties. 

Table 4: Cold-down analysis result 

Item Value 

Duration (s) 2.9 

Cold-down temperature (°C) 132.7 

Cold-down speed(°C) -12.9 

Table 5: Sense temperature according to the ready power duty 

Power duty Sense temp. (°C) @WUT + 15 s 

30.0% 124.0 

37.5% 132.4 

40.0% 135.2 

50.0% 146.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Temperature change for different ready power duties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Temperature change for different ready power duties 

2nd Warm-up Analysis 

At the end of the ready mode a 2nd warm-up analysis is 

performed to with full power for the HR sense temperature to 

reach the print temperature. Figure 11 shows the temperature 

change, and the FCOT, the time to reach the print temperature 

from the ready mode, is 4.7 s, which is close to the specified FCOT 

5 s. The estimated ready temperature TR = 132.4 °C is justified. 

Now from Figure 5 we can see that the ready warm-up time, the 

time to reach the ready temperature from the initial temperature is 

12.5 s. 

Figure 12 shows the temperature change for the whole 

process. The whole analysis results can be summarized as follows: 

 

• Initial temperature: 30 °C 

• Print 

− Print temperature: 170.0 °C 

− Power duty: 93.7% (Power = 1218.1 W) 

− Print WUT: 24.4 s 

• Ready 

− Ready temperature: 132.4 °C 

− Power duty: 37.5% (Power = 487.5 W)  

− Ready WUT: 12.5 s 

− FCOT = 4.7 s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Temperature change for the whole analysis process 

TEC Estimation 

Based on the previous analysis results, TEC (Typical 

Electricity Consumption) can be calculated per eqns (5) and (6), as 

described in [3]. 
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where  

• EJOB_DAILY: daily job energy, 

• EFINAL: final energy, 
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• NJOBS: number of jobs per day, 

• tFINAL: final time to sleep, 

• ESLEEP: sleep energy, 

• tSLEEP: sleep time, 

• EJOBi: energy of the ith job. 

 

Table 6 shows the TEC estimation results. For simplicity 

EJOB2, EJOB3, EJOB4 are assumed to be 85.8%, 81.4%, 81.1% of 

EJOB1, respectively. These values are based on TEC measurement 

of other IH printer. EFINAL and ESLEEP are not included in TEC 

calculation and the ready mode energy is not included either. 

Table 6: TEC Estimation 

Item Value 

ppm 45 

Jobs/Day 32 

Images/Job 31 

EJOB1 (Wh) 22.8 

EJOB2 (Wh) 19.6 

EJOB3 (Wh) 18.6 

EJOB4 (Wh) 18.5 

(EJOB2 + EJOB3 + EJOB4)/3 (Wh) 18.9 

EJOB_DAILY (Wh) 611.6 

TEC (kWh) 3.058 

Comparison with Jig Test 
The analysis results are compared to the measured data from 

the fuser jig test in Table 7. Figure 13 shows the fuser test jig. TEC 

value in the jig test is calculated with assumed energy for job 2, 3, 

and 4 as described before. Figure 15 and 16 show the power input 

to the fuser and the temperature at the HR sense position during 

warm-up and print. The temperature curves show different slopes 

during warm-up, however, the print warm-up time and TEC are 

almost the same. 

Table 7: Cold-down analysis result 

Item Simulation Jig Test 

Print WUT (s) 24.4 23.36 

EJob1 (Wh) 22.797 22.025 

TEC (kWh) 3.058 2.955 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. IH fuser test jig 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Power input to the fuser during warm-up and print 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Temperature during warm-up and print 

Conclusion 
A simple 2D simulation method is proposed to estimate the 

fuser performance based on the conventional heat transfer analysis. 

A sequence of warm-up, print, ready, and warm-up again is 

simulated and the warm-up time to print, print power, ready 

temperature, ready power, and FCOT are estimated. The estimated 

warm-up time and TEC are compared to the measured data from 

the fuser jig test, showing that the proposed  method is reasonable. 
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