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Abstract 
Continuous inkjet (CIJ) devices that use more than one nozzle 

to form a single droplet are reported. The experimentally studied 

devices contain a pair of interactive nozzles that are used to form 

ink drops with large and small volumes by thermally stimulating a 

liquid jet at each nozzle, causing controlled breakup. Resistive 

heaters located around each nozzle are used for both thermal 

stimulation and for controlling the direction of the ink stream from 

each nozzle. Under proper conditions, the large drops formed from 

each nozzle in the pair touch each other and merge laterally, while 

the small drops from each pair of nozzles remain separate. The 

lateral merging CIJ system offers a potential for even greater 

speed advantages and higher image quality than existing single-

nozzle Kodak Stream inkjet technology, a continuous inkjet system. 

Details on design, fabrication, and characterization of the lateral 

merging CIJ device are provided, including results from 

experimental studies. 

Introduction  
Continuous inkjet (CIJ) technology offers potential 

advantages of higher print speed, increased reliability, and lower 

cost of ownership compared to drop-on-demand (DOD) inkjet 

technology. The Stream drop generator is a silicon-based 

microelectromechanical system (MEMS), fabricated with 

integrated CMOS drivers and associated circuitry [1-4]. Typical 

operation of the printhead involves generation of small and large 

drops of fluid via jet breakup controlled by low-energy pulses 

applied periodically to a heater situated around each jet orifice [5]. 

The drops are then sorted using an air cross-flow, with the small 

nonprint drops sent to the gutter for recirculation, and the large 

print drops sent to the print media [6].  

Typically, a volume ratio of at least 3:1 between the larger 

print drops and the smaller nonprint drops is used. Under this 

condition, the small drops are 1X fundamental drops formed using 

a stimulation frequency and velocity such that the jet wavelength 

(λ) is about 4.5 times the nozzle diameter. The larger 3X drops 

have a wavelength of 3 λ and a large drop formation length 

(LDFL) that is much greater than the break-off length (BOL) of the 

1X fundamental drops. It is desired to have the LDFL and BOL as 

short as possible in order to minimize the overall distance to the 

print media. It is also desired to have the mass ratio between the 

large print drops and smaller 1X nonprint drops as large as 

possible to achieve high spatial separation for drop selection using 

the cross-flow of air. 

Continuous inkjet technologies using asymmetric heating of a 

jet to cause deflection, i.e., thermal steering, have been studied 

previously [7]. Researchers have demonstrated that a heating pulse 

provided to the left side of a jet causes the jet to be deflected to the 

right (away from the heat pulse) [7]. The deflection mechanism is 

caused by changes in viscosity and surface tension of the jetting 

fluid induced by the thermal pulse [7,8].   

The lateral merging Continuous Inkjet technology is similar to 

the Stream CIJ technology in that it generates large and small 

drops via controlled breakup [9]. However, unlike previous CIJ 

architectures, it employs thermal stimulation and thermal steering 

to cause the drops from a pair of nozzles to merge laterally to form 

large drops. A comparison of the lateral merging CIJ to Stream CIJ 

operation (3:1 ratio) is shown in Figure 1. The 2 × 2 large drops 

shown are the result of a 2X drop formed by each nozzle merging 

laterally to form a single 2 × 2 drop, which is effectively 4 times 

the volume of the 1x small drops. The distance between the 2 

nozzles in the nozzle pair is set such that the small 1x drops do not 

merge but the large 2X drops do merge laterally. 

In operation, the lateral merging large drop (2 × 2 drop) 

wavelength is 2 λ; therefore, the LDFL is very short and difference 

between the BOL and LDFL is minimized. Because of lateral 

merging, the large drop is 4 times the size of the small drop, which 

should provide better drop separation than a 3:1 ratio with a single 

nozzle. The 2 × 2 drops also provide a print speed advantage over 

3X large drop print mode due to the increased frequency of print 

drop formation. The reduction in LDFL should also bring gains in 

image quality by reducing the throw distance from the nozzle plate 

to the receiving media. 
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Figure 1. Comparison between Stream CIJ and lateral merging CIJ. 

Device Design and Fabrication 
The lateral merging experimental devices were designed such 

that the effects of nozzle diameter (DNozzle) and nozzle spacing 

could be studied systematically. As shown in the cross-sectional 

view of the lateral merging devices in Figure 2, DNozzle was varied, 

chip to chip, from 6.5 µm to 9 µm in 0.5 µm increments.   
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Figure 2. Cross-section of the lateral merging device having a nozzle pair in a 

single ink channel with critical dimensions is shown. 

On each chip there were 7 lateral merging devices, each 

having two nozzles of the same DNozzle per ink channel with each 

pair working as one effective nozzle. The spacing between the 

lateral merging nozzles within the ink channel was varied device to 

device ranging from 2.33* DNozzle to 3* DNozzle; each nozzle pair is 

centered with their respective ink channel. There was one ring 

heater device on each chip having the same diameter as the nozzles 

of the lateral merging devices for comparison. There are 9 active 

effective nozzles per chip spaced 300 µm apart (center to center). 

In order to employ thermal steering, the lateral merging 

nozzles pairs were designed so that each nozzle has a split heater 

where the inside and outside heaters are connected in series. 

Practically, the outside heaters are driven simultaneously to steer 

the jets toward each other, and the inside (between the nozzles) 

heaters are also driven simultaneously to steer the jets apart. The 

shape and location of the heater elements are shown in the 

micrograph in Figure 3. 

 

 
Figure 3. Top view micrograph of lateral merging device. 

The heaters for the lateral merging devices were fabricated 

from polysilicon using standard processes on 675 µm thick wafers. 

The heaters were sized so that the resistivity of the heaters is 

constant for all design variations. The nozzle membrane was 

formed from a dielectric film stack (2.6 µm thick), and the nozzles 

were etched in alignment to the heaters; the offset from the edge of 

the nozzle to the heater edge was held constant at 0.8 µm. The 

silicon wafers were thinned to 350 µm, and the ink channels (40 

µm × 120 µm) were etched in silicon by the anisotropic deep 

reactive ion etch (DRIE) process [9].  

Experimental 
The lateral merging chips were packaged such that the 

backside channels were in fluidic communication with a pressure 

vessel used to provide fluid to the nozzles. The bondpads were 

wirebonded to a PGA and driven by an arbitrary waveform 

generator and a voltage source. Images of drop formation were 

captured using typical stroboscopic techniques.  

Initial pressurization of a lateral merging device showed the 

propensity for the fluid streams to merge downstream of the nozzle 

plate. The 0 V micrograph of Figure 4 illustrates typical observed 

behavior. The ability to use thermal steering was evaluated by 

applying increasing levels of voltage (stimulation) at high duty 

cycle (99%). As seen in Figure 4, the streams can be driven from a 

condition of convergence, through a condition of parallelism, to a 

condition where the streams diverge simply by increasing the 

power provided to the inside heaters. This is consistent with the 

results discussed earlier from the single-nozzle thermal steering 

devices. 

 

 
Figure 4. Images of fluid jets being deflected at various power levels. 

Revisiting the lateral merging device design, the inside 

heaters are connected in series and outside heaters are connected in 

series in order to steer the drops together or apart, respectively. A 

simple waveform, shown in Figure 5 a), was used to test the 

effectiveness of the thermal steering when used to form 1X and 2 × 

2 drops. In the study the inside and outside heaters were used in 

phase with the same waveform but different amplitude. The 

voltage on the outside heaters held fixed at values from 1 V to 5 V; 

the voltage required to form separate 1X drops was recorded. For 

all nozzle pairs it was possible to form separate 1X drops and 

merged 2 × 2 drops with this methodology (up to the limit on the 

power supply).   
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Figure 5. Representative waveform used to drive the lateral merging devices 

is shown in a); good agreement was seen between expected and actual 

results as seen in b). 
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Figure 5 b) illustrates drops formed by a representative nozzle 

pair having DNozzle = 9.0 µm, a spacing factor of 2.78 operated 

using the representative waveform illustrated in 7 a) with an 

amplitude of 4 V on the outside heaters and 7.5 V on the inside 

heaters. As expected from the design, a large voltage/energy on 

inside heaters pushes drops apart, and conversely large 

voltage/energy on the outside heaters pushes drops together. 

However, as can be seen from the data in Figure 6, non-merging 

small drop formation requires large voltage on inside heaters if 

there is a voltage on outside heaters.   

Figure 6 also illustrates that the nozzles get closer together as 

the energy required to separate the 2 streams of 1X small drops 

increases. Additional testing was completed using the 

representative waveform with no voltage applied to the outside 

heaters. It was determined that the outside heaters were 

unnecessary to form small and large drops with this experimental 

design. The remaining characterization of the lateral merging CIJ 

devices was conducted using only the inside heaters. This ability to 

stimulate from a single heater pair has the benefit of requiring only 

one electrical connection per nozzle pair, thus making it consistent 

with current Stream and other single-nozzle devices.  
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Figure 6. Energy required to achieve separate small drops increases as 

nozzle spacing decreases. 

The large drop formation length (LDFL) and break-off length 

(BOL) were assessed for the lateral merging devices and compared 

to data from a single-nozzle device of equivalent diameter. Using 

the single-nozzle devices, it was found the difference between the 

LDFL and BOL (LDFL-BOL) increased linearly as a function of 

the size of the large drop. Additionally, the 2 × 2 drops formed 

from a lateral merging device had the same LDFL-BOL as a 2X 

drop formed using a single-nozzle device and an equivalent energy 

waveform. Table 1 has data from 9.5 µm nozzle devices; clearly 

the 2 × 2 LDFL is much closer to the BOL than the single-nozzle 

3X large drop. 

Table 1: LDFL-BOL data from 9.5 µµµµm nozzle devices 

Nozzle Type Drop Size LDFL-BOL 

(µµµµm) 

Single Nozzle 2X 184 

Single Nozzle 3X 429 

Single Nozzle 4X 679 

lateral merging Pair 2 × 2 186 

 

Using the same experimental setup as above, the quality of 

the lateral merging drop formation was assessed for a variety of 

devices and waveforms. As indicated above, all testing was done 

using only the inside heater pair. The lateral merging drop 

formation quality can be described by a quality factor that is 

related to the expected number of drops for a given waveform. 

Images were captured for each condition and processed as shown 

Figure 7 a). The Normalized Drop Value (NDV) was calculated by 

dividing the actual drop count in the test image by the expected 

drop count. When NDV is equal to 1, then drop formation is good. 

An NDV greater than 1 indicates that some of the 2 × 2 drops have 

failed to merge, while an NDV less than 1 indicates there is 

unwanted merging of some of the 1X drops.   

Figure 7 b) shows an example of mapping the drop formation 

window as a function of energy for a 9 µm nozzle pair at 2.33* 

DNozzle spacing using a representative waveform (measured 2 mm 

from the nozzle plate). As shown, when there is too little energy, 

there is unwanted small drop merging, while too much energy 

causes the 2X drops to be deflected too much and there is failure to 

merge into 2 × 2 drops. The dashed vertical lines on Figure 7 b) 

indicate the operating window where both small drops and large 

drops can be formed. This behavior is representative of all of the 

lateral merging devices tested.  

 

 

 
Figure 7. Image processing sequence for NDV calculation is shown in a); 

representative drop formation window for a 9 µm nozzle pair is shown in b). 

For a given nozzle diameter, when the energy applied is 

within the operating window, the operating energy input and the 

angle between the two jets depend on the spacing between the two 

nozzles in the nozzle pair. As the nozzle spacing decreases, the 

operating energy input increases and the angle between the two jets 

systematically changes from converging to diverging. 

Additionally, for a given geometry (DNozzle and spacing), increasing 

the operating energy input also increases the angle between the two 

jets. Figure 8 shows representative data taken for 9 µm nozzles 

with various nozzle spacing. The distances between small drops 

from the two nozzles were measured at two different locations 

from the nozzle plate. The change in the separation of the small 

drops between the two locations gives the angular relationship 

between the two jets. Jets are parallel when distance between pairs 
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of small drops does not depend on distance from the nozzle plate. 

The data clearly shows that the angle between the two jets depends 

on energy input to the heaters and the nozzle spacing. 

 

 
Figure 8. Convergence and divergence of small drops depending on energy 

and nozzle spacing. 

Once conditions were determined for drop formation, a 

number of print patterns were created to demonstrate that different 

patterns could be created using the same basic waveform and 

energy. Figure 9 shows some representative drop patterns formed 

with a single lateral merging nozzle pair. 

 

 
Figure 9. Images of various drop patterns made with a single lateral merging 

device. 

Conclusions  
In summary, dual nozzle lateral merging CIJ devices with 

split heaters were successfully fabricated using MEMS processes. 

As expected, the lateral merging CIJ devices have significantly 

shorter large drop formation lengths than existing single-nozzle 

CIJ technology. The lateral merging CIJ devices were used to 

clearly demonstrate the feasibility of generating patterns of small 

drops and laterally merged 2 × 2 large drops from the nozzle pairs. 

For the conditions studied, it was found that stimulating the jets 

with a single pair of heaters located between the nozzle pairs was 

sufficient for stable drop formation and discrimination between the 

2 × 2 drops and the fundamental drops. Furthermore, the ability to 

optimize the operating window for good drop formation with 

energy, waveform, and nozzle configurations was presented. 

Within an operating window of good drop formation, it is further 

possible to select the energy, waveform, and nozzle spacing such 

that the small drop pairs deviate as a function of distance from the 

nozzle, reducing the likelihood of small drop merge events. 
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