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Abstract 
Nanoscale testing is a growing field applied  across many 

disciplines, sciences and industries. Recently nanoscale testing of 
polymers used in the printing industry has been shown to 
supplement conventional testing of physical, dynamic and 
electrical properties. Nanoscale testing consists of a variety of 
nano  testing methods that can be applied across the Non Impact 
Printing  Industry, from material development and characterization 
to  understanding functionality and failure modes of  components. 
Nanoindentation, nanoscratch, nano dynamic mechanical analysis, 
nano  modulus mapping, nano hardness, nano tensile strength and 
nano electrical conductivity can be measured and applied to 
analysis of polymer performance.

This paper will describe nanoscale testing as applied to the 
characterization of polymers used in fusing and  charge transfer 
applications, as well as nano testing of toner  particles  and fixation 
to  print media. In addition, nanoscale testing of surface substrates, 
and adhesion to substrates is discussed as may be applied to ink jet 
technologies, thin films, and the non impact printing of electronics, 
biological and pharmaceutical materials.

Non Impact Printing Material Characterization 
and Testing

Nanomechanical and nanoelectrical  testing has been applied 
to  non impact printing material properties characterization in 
recent years by 7-SIGMA and HysitronTM[1,2]. In these studies the 
authors applied nano testing  techniques of nanohardness, 
nanoindentation, nanoDMATM, nano Modulus Mapping, 
nanotensile, and nanoECRTM (electrical contact resistance) to 
nanocomposite materials for application in fusing and transfer 
roller applications. In those studies, and others [3], correlation was 
also made between nano testing and conventional testing 
techniques. The testing was applied to nanocomposite silicone 
rubber materials of nanoalumina and of carbon nanotubes. Figure 1 
shows an example of nanoDMA analysis of carbon nanotube 
silicone rubber. Here the nano Storage Modulus is plotted against 
the Storage Moduls  obtained by conventional DMA analysis. 
Figure 2 shows the the nanoHardness of the carbon nanotube 
composite obtained by NanoIndentationⓇ  using a Hysitron TI-950 
TriboIndenterTM. Electrical  conductivity measurement can be 
obtained with  the addition of nanoECRTM to the TI-950. Figure 3 
shows the nano electrical contact resistance of the CNT rubber 
composites with different loadings  by weight. Electrical 
conductance was obtained by placement of the material on a 
charged plate and the current is  monitored by the nanoindentor as 
the probe is indented  to a depth of 7 microns, held for 7 seconds 
and released. 

Storage Modulus (E’)   DMA & nanoDMA 

Figure 1. NanoDMATM and conventional DMA of different loadings of carbon 
nanotubes, by wt., in a liquid silicone rubber.
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Figure 2. Nanohardness of different loadings of carbon nanotubes, by wt., in a 
liquid silicone rubber.
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Figure 3. NanoECRTM (electrical conductivity in micro amps) of different 
loadings of carbon nanotubes, by wt., in a liquid silicone rubber.

Toner Hardness and Adhesion Measurement 
Nanomechanical testing of toner physical properties and toner 

adhesion to paper were studied. Toner particle compression using 
nanoindentation was achieved using a Hysitron TI-950 
TriboIndenterTM nanomechanical test instrument. Indentation tests 
on  a single toner particle were tested at  room temperature, 40°C, 
60°C, and 80°C using a diamond conical probe. On each toner 
particle indentation was  performed to measure the force required to 
compress the toner particle 3µ at each temperature. Figure 4  shows 
the plot of the load versus displacement at each temperature. Tests 
were conducted at  100°C, but due to melting  of the toner the test 
could not be completed.

                           ■ 25 °C   ■ 40°C  ■ 60°C  ■ 80°C  

Figure 4. Nanoindentation of a toner particle at 25°C, 40°C, 60°C, and 80°C. 
Force applied, in micro Newtons, vs depth of indentation in  nanometers.

Figure 5 shows the force required for 3µ compression of 4 
different toner particles at room temperature.  The toner particles 
were from a digital color printer (DCP), a desktop color printer 
(DTCP) two different high speed black toner print on demand 
printers (POD). 
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Figure 5. Nanoindentation of toner particles from different printers at 25°C. 
The average nominal force, mN, needed to compress a toner particle 3 
microns.

Nanoscratch tests were performed to determine the adhesion 
of various toner particles to paper substrates and the toner pile 
height. Scratch tests were performed using the Hysitron 3D 
Omniprobe to determine the lateral  displacement force needed to 
dislodge and move a single toner particle. Figure 6 shows the toner 
height across a pixel. The lateral displacement across 200 microns 
shows the variation of toner thickness. 
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Figure 6. Toner depth profile across pixels.

Figure 7 shows the lateral  force required to  displace a cyan 
colored fused toner particle on a poster produced from a digital 
color press. The scratch test was performed with the Hysitron 3D 
Omniprobe.
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Figure 7. Lateral force required to dislodge a cyan colored fuser toner particle.

Adhesion Measurement of Thin Films to 
Substrate

The application of non impact digital  printing technology for 
the printing of metal and electrical  circuits, and applications for 
printing medical and biological  materials onto various substrates, 
is  a growing research area [4,5,6]. Nano testing of thin film 
interfacial adhesion for electronics and medical application is a 
well established technique. This section discusses the technique 
behind film adhesion, coefficient of friction, film delamination and 
wear resistance measurements along with key examples in relevant 
areas including coatings used on medical stents and nanoparticle 
based composite films. Advances are being made in high-end 
product and process engineering that require highly versatile, 
consistent and yet accurate characterization instrumentation that 
would further sharpen the established material analysis and quality 
control procedures. In  this technique, augmentative normal force 
and lateral displacement is input to the system simultaneously and 
the resultant  lateral or frictional force and normal displacement is 
recorded with respect to time.

A typical plot  of normal displacement  versus time showing 
the critical depth, hcrit, at which the failure occurs is shown in 
figure 8(a). At the same time, the critical load, Pcrit, at which the 
film fails is recorded as a sharp fall in  lateral force as shown in the 
plot  of lateral  force versus time in figure 8(b). This critical load 
also serves as a quantified parameter characterizing the strength of 
film adhesion to its substrate, while the hcrit also signifies the 
delamination depth in the normal direction and delamination point 
in  the lateral  direction. Friction coefficient  (µ) from any test 
involving probe contact across a certain distance over a sample is 
simply the calculated quotient of lateral  to normal force. Nanoscale 
wear resistance testing is performed to understand and mimic the 
stress induced failure of the coatings during its operation by 
performing multi-scratch tests across  a chosen scan area, typically 
using a blunt Berkovich probe. In-situ  Scanning Probe Microscope, 
SPM, imaging technique can be employed to  immediately image 
the area scratched. Using this technique, the probe used  for scratch 
and wear resistance testing is  also used to obtain a high resolution 
topographical image immediately following the delamination or 
adhesion testing routine within the same platform and without  the 
requirement of relocating the sample. 

!

!Figure 8 (a). Probe normal displacement profile wr.t. time and (b) probe 
lateral force profile w.r.t time of thin film interfacial adhesion.

Extremely sensitive and highly  functional coatings are also 
used in biomedical devices for drug delivery purposes. Thin 
polymeric coatings (~2 µm, Parylene C) are processed as coatings 
over medical stent devices to facilitate pharmacologic functioning 
to  prevent restenosis  (reblocking) and thrombosis (clotting) within 
the artery. Given the objective, these coatings are critical and hence 
form an integral part of the stent, as long as its adhesion to the 
stent substrate (130 µm thickness stainless steel tube) is stable and 
intact. Hence, measuring the interfacial adhesion of the polymeric 
coating is of great importance. A Hysitron TriboIndenter TM 
nanomechanical testing system equipped with a 3D Omniprobe 
head and a 5 µm conospherical  probe were used for scratch testing 
on  these Parylene coated stent  surfaces [7]. The scratch load 
function (software experimental routine) consisted of applying 
various constant normal loads ranging from 20-35 mN over a 
lateral displacement  of 500 µm. As explained before, force and 
displacement were continuously recorded as a function of time in 
both  normal and lateral directions. The chosen  scratch function 
produced a periodic delamination pattern that can be seen in both 
the lateral force (LF) vs. lateral displacement (LD) data in Figure 
9a, and  the optical  micrograph in  Figure 9b.  As is seen in Figure 9, 
there is  a clear correlation between the measured force and the 
metrology of the delamination pattern. From the plot of lateral 
force versus lateral  displacement, the values such as  Fmin (local 
minimum lateral force corresponding to the start of interfacial 
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failure), Fi, (lateral force at any given displacement), and xi, 
(corresponding lateral displacement) can further be used to 
calculate the energy associated with a particular delamination 
pattern, including coating and the substrate delamination, which in 
turn can be useful towards  denoting the interfacial fracture 
toughness of the Parylene coating.

!Figure 9 (a). Probe lateral force versus lateral displacement data showing 
cyclic film delamination and (b). inset showing corresponding optical 
micrograph of the delamination pattern

Nanocomposite films composed of nanoparticles are being 
employed in printing of semiconductor and biotechnology 
substrates. Durability  of such films is a function of  adhesion of the 
nanoparticles with the glue or polymer matrix and to each other. In 
this  example, nanoparticles were deposited to form nanocomposite 
films using Vapor Particle Deposition (VPDTM). Traditional 
durability testing techniques involving water erosion  technique has 
proven to be time consuming. In this example, a Hysitron TI-950 
TriboIndenterTM equipped with a diamond cube-corner probe was 
used to perform ScanningWearTM (nanoscale wear resistance) 
testing to determine wear properties upon induction of varying 
stress levels. In this  technique, the probe was raster-scanned across 
a 5x5 µm area of the film in 256 scan lines while the normal force 
was ramped between two user-specified forces. As shown in Figure 
10, failure of the film at a particular normal force was easily 
observed by exposure of the underlying substrate. Immediately 
after each wear test was completed, the worn areas were imaged 
using a 10x10 µm scan size and a 1µN contact force.

Conclusion
Nano testing of materials  used in, or printed by, non impact 

printing technologies provides the ability to analyze physical and 
dynamic properties of materials, and provide interfacial  properties 
of materials applied to substrates at the nano level. NanoDMATM 
nanoECRTM, and nanohardness   techniques have been used to 
characterize the physical and electrical properties of carbon 
nanotube rubber composite and correlated with conventional 
testing techniques at the macro level. Nanoindentation  and 
nanoscratch techniques tested single toner particles for physical 
changes over a range of temperatures and the adhesion to paper. 
Nano testing techniques have established protocol in the research 

Figure 10. 10x10 µm topographical in-situ SPM image showing the 5x5 µm 
worn area of the nanocomposite film showing film failure at a normal force of 
roughly 23 µN

testing community for interfacial adhesion of thin films to various 
substrates. Nanoindentation and nanoscratch  in-situ with Scanning 
Probe Microscopy provide a valuable analysis tool for interfacial 
adhesion and wear properties. These techniques can easily be 
applied to metals and other materials  applied to  electrical circuitry 
substrates by non impact printing technology. NanoECRTM can be 
applied as well to  determine the electrical characteristics at the sub 
micron level of those printed circuits. Similar techniques with 
these instruments can help analyze the physical properties of 
biological substances, such as cell scaffolding, applied by non 
impact printing. The adhesion of thin materials  and pharmaceutical 
chemistry applied to medical devices, such as  stents, can be 
accurately determined  for development and quality  control 
analysis.
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