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Abstract 
Reliable measurements and deposition control are critical to 

the success of ink jet applications. We report gravimetric and 

optical measurements of microdroplets that enable high-accuracy 

drop-on-demand (DOD) ink jet printing, which has been applied to 

the production of materials for testing trace and stand-off 

explosives detectors deployed at airports and other locations. The 

imprecision of solute mass deposition is typically less than 0.4 % 

while the combined standard uncertainty is less than 1 %. 

Applications include the production of trace explosives reference 

swipes, the manufacture of standard microspheres by drying 

droplets either in flight or on superhydrophobic surfaces, and the 

generation of trace explosives vapors.  The gravimetric 

measurement capabilities of the system have also enabled testing 

and calibration of grayscale thresholding routines used in optical 

micro-dimensional analysis of droplets in flight. 

 

INTRODUCTION 
Trace detection is a primary strategy for thwarting terrorism in 

the US and abroad. We are working with the U.S. Department of 

Homeland Security (DHS) Science and Technology Directorate, 

the DHS Transportation Security Laboratory, and the NIST Office 

of Law Enforcement Standards to strengthen the metrology system 

that supports the widespread operational deployment of explosive 

trace detectors (ETDs). A major aspect is the development of 

realistically designed test materials for assuring the reliability of 

trace detection, and we have adapted ink jet technologies for the 

purpose.  Ink jet metrology, i.e. the infrastructure of facilities, 

materials and methods needed for accurately measuring droplet 

characteristics during non-contact printing, is being established at 

NIST [1-3].  This is enabling a multitude of applications related to 

homeland security, including the production of swipe materials for 

testing the performance of ETDs, the generation of trace vapors for 

calibrating explosive vapor detectors, and the production of 

standard particles and thin films useful for testing sampling 

strategies and stand-off detection. Another outcome has been the 

ability to accurately calibrate optical systems using gravimetric 

measurements. The gravimetric and optical methods developed for 

ink jet deposition are briefly described, as well as several 

homeland security applications that have been developed by the 

various authors. 

 

 

 

EXPERIMENTAL 
Our drop-on-demand ink jet printing systems are 

manufactured by MicroFab Technologies,* to which we often 

interface various controls and sensors in order to monitor, improve 

and extend performance. Headspace pressure in the fluid reservoir 

is controlled through a pressure/vacuum regulator (MKS PC90) 

using feedback from a differential pressure transducer (MKS 

698A) referencing the headspace to ambient barometric pressure.  

Average droplet mass is determined by ejecting a known number 

of droplets (typically 20,000) into a capsule positioned on a 

submicrogram balance and correcting for evaporation and other 

effects [1]. Droplet imaging is performed using the JetXpert 

system manufactured by ImageXpert, where images of individual 

droplets within an ejection sequence may be captured to monitor 

droplet formation processes and delineate non-periodic events. 

Solute concentrations are validated through a variety of analytical 

techniques, including GC-MS, HPLC, and UV-vis. Evaluation of 

uncertainty indicates that the combined standard uncertainty for 

delivering solutes in fluids through our ink jet systems is less than 

1 %, while the imprecision in repeated determinations is less than 

0.4 % (Figure 1). The driving waveform, the ejection cycle period, 

the fluidic pressure, and the sequence position of a droplet in a 

burst all influence the dispensed mass by a host of mechanisms, 

including acoustic resonance interactions, orifice refill dynamics, 

and first-drop and last-drop effects [3].   

 

                                                                 

 

 
* Certain commercial equipment, instruments, or materials are identified in this paper 

to specify adequately the experimental procedure.  Such identification does not imply 

recommendation or endorsement by the National Institute of Standards and 

Technology, nor does it imply that the materials or equipment identified are 

necessarily the best available for the purpose. 

Figure 1. Repeatability of ink jet deposition as measured by gravimetry across 

42 h. Measurements were repeated every 16 m except during a scheduled 

break of about 6 h. Error bars are estimated combined standard uncertainties 

of individual measurements. 
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APPLICATIONS 

Test Materials for ETDs and Forensics  
NIST uses a MicroFab Jetlab4 XL-4 printer system having an 

integrated submicrogram balance and precision motion stages. The 

x-y stage holds a variety of templates on which we may position 

sampling substrates and other objects for inkjet deposition of trace 

explosives and associated compounds (Figure 2). A selected 

number of droplets from a standardized solution, which contain the 

desired trace amount of solute, are precisely deposited on the 

surface of each substrate. The small volume of dispensed fluid 

enabled by ink jet deposition allows fast evaporation before the 

fluid wicks into the substrate, leaving most of the solute on the 

upper surfaces. This is important for realism since, at security 

checkpoints, swiping also results in residues atop the surface of the 

sampling substrate. The substrate is placed into a thermal desorber 

that heats the sample, releasing vapors for detection if explosives 

are present.  

We have been successful at preparing trace explosive test 

materials at dosages spanning many orders of magnitude simply by 

changing the number of droplets deposited from a standard 

solution. For large numbers of droplets, these may be precisely 

applied in arrays within the small area of the substrate that is 

heated by the thermal desorber. Substrates containing explosives 

such as cyclotrimethylenetrinitramine (RDX), 2,4,6-trinitro-

toluene (TNT) and pentaerythritol tetranitrate (PETN) have been 

prepared by this method. The printing of simulated fingerprints has 

also been demonstrated, which provides a means to fabricate a 

standard residue for forensic training purposes.  

Designed residues, which may be comprised of an array of 

particle microspheres at one extreme, to a uniform layer of 

compound at the other extreme, may be prepared by controlling the 

spatial deposition of the fluid and the contact angle of the fluid on 

the applied surface. In one such example, aqueous solutions of 

ammonium nitrate were deposited onto a superhydrophobic surface 

prepared at the NIST Center for Nanoscale Science and 

Technology by an all-plasma surface  
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Figure 2. Precision printing of explosive compounds on substrates for the 

testing of trace detectors. 
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igure 3. (Left) Environmental scanning electron micrographs (ESEM) of 

uperhydrophobic surface, showing nano-pillars of fluorinated polymer. 

Right) Optical micrograph of aqueous sphere being grown by DOD ink jet 

eposition on superhydrophobic surface.  
odification process (Figure 3) [4].  The surface consisted of 

no-pillars of fluorinated polymer that provided contact angles 

eater than 150° with water. An array of solid microspheres was 

ade by depositing bursts of aqueous microdrops on this surface 

d allowing the water to evaporate from the spherical drop, which 

rank and quickly transitioned to solid ammonium nitrate.  In 

other example, a self-assembled monolayer (SAM) of chloro-

methyl-n-octylsilane was formed on silicon wafers by vapor 

position [5], yielding a hydrophobic surface with a water contact 

gle of approximately 90°.  The contact angle may be further 

ilored by timed exposure to UV light to generate surfaces with 

ater contact angles varying from ≈ 90° to < 10°. 

tandard Particle Production 
Specialized particles are produced by ink jet deposition in 

ilored environments.  These materials are used to test and 

timize manual, automated and aerodynamic particle sampling 

ethods used in explosive screening. Standard particles are 

oduced by ejecting droplets through a vertical drying tube and 

aporating the droplets in flight, leaving behind solute particles.  

rticle sizes are predicated by tailoring the ejected droplet size as 

ell as by coalescence of a known number of droplets in bursts, 

here the slower first drop in a burst acts as the nucleating entity.  

DX and ammonium nitrate particles prepared in this manner are 

own in Figure 4.  
Figure 4.  ESEM of RDX particles (left) and ammonium nitrate particles 

(right).  Each RDX particle (8 µm diameter) was made by coalescence of a 5 

droplet burst of isopropanol solution. Because of challenges in ejecting 

aqueous solutions, the diameters of the ammonium nitrate particles ranged 

from 14 µm to 28 µm; the larger particles were not completely dry when 

impacting the silicon surface. 
©2011 Society for Imaging Science and Technology



 

 

Trace Vapor Generation 
The NIST ink jet vapor generator ejects fluid droplets 

containing trace explosives onto a heated surface (Figure 5). The 

resulting vapor plume is diluted into a calibrated air stream, where 

explosive vapor signatures may be produced at fg/L to ng/L levels. 

Using this generator, explosive vapor sniffers may be calibrated 

and next-generation detectors may be tested and validated.  The 

design of the system takes into account the upward direction of the 

thermal vapor plume in order to minimize wall effects; i.e., 

interactions of the explosive vapor with cooler surfaces such as 

glass walls and the ink jet nozzle (Figure 6). Photoionization 

measurements of the emerging fluid vapor show that the residence 

time for vapors within the generator is typically less than 10 s, and 

that the variation in output across one hour is below the 

imprecision (1.7 %) of the measurement.   

 An advantage of DOD ink jet vapor generation is the 

programmability of the desired vapor signature, which may be 

delivered continuously or in pulses, and at levels that span over 

seven orders of magnitude. Figure 7 shows the response of a FIDO 

XT trace vapor sniffer to a pulse of TNT generated every 90 

seconds.  The amount of TNT in each pulse was programmed to 

increase slightly to compensate for the expected loss in sensitivity 

of the detector during the test.  The compensated variability of the 

detector could therefore be measured directly. 

Metrology and Gravimetric Calibration of Optical 
Thresholds  

Our gravimetric method offers an 

approach to microdrop sizing that has 

the benefit of high precision and strong 

traceability to the Systeme Inter-

nationale (SI).   Using the density of the 

fluid, the measured mass of a spherical 

droplet may be converted to diameter. 

The uncertainty of such an approach, 

which is dependent on the combined 

uncertainties in the gravimetric 

measurement, the fluid density and the 

aspect ratio of the droplet, can amount 

to less than 1 %. Mass determination 

based on optical measurements of 

droplet diameter is inherently prone to 

Figure 5.  Ink jet droplets containing a trace explosive are ejected 

horizontally onto a surface heated to a temperature in the sub-boiling 

regime of the fluid. When conditions are right, the composition of vapor 

evaporating from the stable pool of fluid on the surface is the same as the 

composition of the impinging droplets. 

Figure 6.  The NIST ink jet trace vapor generator (left image) and close-

up view of top portion (right image, containing theatrical fog for flow 

visualization).  

Figure 7. Response of an explosive sniffer to programmed pulses 

of trace TNT vapors generated by the NIST ink jet system. 

Figure 8.  Focused droplet 

image. The bright spot in 

the center is the defocused 

image of the illuminator, 

which is focused in front of 

the droplet.  

T-80 Diameter

T-50 Diameter

T-20 Diameter

Figure 9. Grayscale profile across center of droplet image. The diameter 

measurement depends on the adopted grayscale threshold, and varies 

by 8 % between the T-20 and T-80 diameters, which are defined by the 

grayscale values at 20 % and 80 % of the grayscale range. 
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high uncertainties because the volume increases as the cube of the 

radius. For example, if a diameter measurement is inaccurate by 5 

% (such as 105 µm instead of 100 µm), the volume (and thus 

mass) calculated from that diameter will be inaccurate by 15 % (in 

our example, 0.602 µL instead of 0.524 µL).  Optical methods 

depend on accurate delineation of droplet boundaries, the 

uncertainties of which are due to many factors, including 

refraction, lensing effects, and physical differences between 

calibration artifacts and the microdrops in flight (Figures 8 and 9). 

Numerous efforts have been performed in understanding and 

correcting for these factors in order to better characterize the sizes 

and shapes of microdrops by optical means, yet many uncertainties 

remain. Imaging programs frequently give the user many 

thresholding options based on various optical and statistical 

assumptions, with each method prone to particular biases and the 

set of methods offering a range of results. Using gravimetrically-

determined droplet dimensions, we have found that the Otsu 

method [6] for delineating droplet boundaries works well under 

controlled conditions.  

It is useful to explore the limitations of optical measurements 

from ink jet imaging systems.  In progress is a comparison of 

theoretical focus positions and uncertainties relative to actual 

optical measurements of light paths and spheres using 

independently measured diameters (Figure 10).  A variety of 

optical effects are involved that can lead to variations in 

measurements. These effects include the appearance of light and 

dark alternating diffraction/refraction lines around the perimeter of 

the sphere, the extended range of focus, digital pixelation, the 

different focal planes of the illuminator and the perimeter of the 

sphere, and uneven illumination.  The uncertainties introduced by 

these factors are being modeled and empirically explored by 

comparing optical images of spheres of known diameter (Fig. 10 

top) to analyze the 3-dimensional optical reconstruction of the 

effects (Fig. 10 bottom). 
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Figure 10. Top: schematic showing spherical droplet of true 

diameter (d), an illuminator (i), the image of the illuminator at the 

focal point of the sphere (f) and the resulting ink jet system image 

(s) from which a measured diameter (d') is obtained.  Bottom:   

3-dimensional empirical investigation of optical paths and effects 

around the perimeter of a sphere of known diameter (d) with 

diffraction effects (l) impacting measured diameter (d') and 

showing focal point (f) and appearance of sphere at a specific 

plane of focus (p).  The 3D reconstruction was performed using 

Image-Pro Plus 6.2 running 3D Constructor  5.1 (Media 

Cybernetics, Inc., Bethesda, MD). 
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