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Abstract 
Organic materials are being investigated for their electronic 

properties. Such materials are especially attractive for 

lightweight, flexible, and low-cost solar cells and light emitting 

devices, as well as transistors and electrophotographic 

photoreceptors. Yet, even after 40 years of work and a large 

database, the physics and chemistry that determines the electronic 

properties of organic materials are not well understood. This 

paper briefly summarizes data obtained from a new experimental 

variant of the time of flight (TOF) technique called TOF1a, which 

are compared to the predictions of a two-layer multiple trapping 

model (MTM) with an exponential distribution of traps.  In TOF1a 

the charge generation depth is varied continuously, from surface 

generation to bulk generation, by varying the energy of the 

electron-beam excitation source. This produces systematic 

changes in the shape of the current transient that can be compared 

to the predictions of the two-layer MTM. We find that we can 

semi-quantitatively fit current transient data over the whole time 

range of the experiment, but only by using theoretical parameters 

that lie in a narrow range, the extent of which we quantify here.  

Results and Discussion  
It is the purpose of this paper to summarize data obtained 

from a new experimental variant of the time of flight (TOF) 

technique called TOF1a, which are compared to the predictions of 

a multiple trapping model (MTM) with an exponential distribution 

of traps.  In the TOF1a experimental variant, the charge generation 

depth is varied continuously, from surface generation to bulk 

generation, by varying the energy of the electron-beam excitation 

source, as recently reported by Dunlap et al [1]. This produces 

systematic changes in the shape of the current transient that can be 

compared to the predictions of the two-layer MTM. In the model 

one additional assumption is added to the homogeneous MTM, 

namely: that there exists a surface region, on the order of one 

micron thick, in which the trap distribution is identical to the bulk, 

but has a higher trap concentration. We find that the characteristic 

experimental features of an initial spike, flat plateau, and 

anomalously broad tail, as well as the sometimes observed cusp or 

decreasing current near the transit time, can all be described by 

such a two-layer model, i.e. they can arise as a result of carriers 

delayed by a trap rich surface layer. We find that we can semi- 

quantitatively fit current transient data over the whole time range 

of the experiment, but only by using theoretical parameters that lie 

in a narrow range.   

Shown in Fig. 1 is a current transient obtained in time-of-

flight experiments with 30% DEH:PC (p-diethylaminobenz-

aldehyde diphenylhydrazone in bisphenol-A polycarbonate) 

plotted on linear-current linear-time (t) axes. The initial spike and 

long tail are universally observed in time-of-flight transport 

experiments in molecularly doped polymers (MDP). The tail can 

be characterized two ways:  

(1) The time (τ 1/2) for the current to drop to one half the value 

of the plateau at the transit time (τ) can be determined and a 

parameter w can be calculated which characterizes the half width, 

where w = (τ1/2 - τ)/τ1/2.  For almost all published MDPs it is found 

that w equals 0.5 ± 0.15.  Physically this means that at the time that 

the fastest carriers are exiting the sample (defined as the transit 

time, τ) there are carriers spread throughout the whole sample. w 

can be measured as a function of the electric field. w is found to be 

independent of E (see Fig. 2), a characteristic with the name of 

universality in the literature of dispersive transport.  

(2) The second way to characterize the tail is to plot data such 

as Fig. 1 on log-current log-time axes, as shown in Fig. 3. Now the 

initial spike appears as an algebraic decay followed by a plateau. 

The tail is an algebraic decay that follows an approximately t-2 

power law. Such curves can be superimposed as a function of 

electric field as shown in Fig. 4. Universality (independence of 

electric field) is approximately observed over more than two 

decades in current and time. In their present form, existing models 

including Gaussian transport, field diffusion, Coulomb repulsion, 

intrinsic shallow trap controlled mobility, the Gaussian Disorder 

Model, Correlated Disorder Models, polaron theory, and Scher-

Montroll theory, are unable to account for all the experimentally 

observed features of charge transport in disordered systems [2].   

Recently a two-layer model of charge transport [1] has been 

proposed. In this model it is assumed that there is a surface layer 

on the order of one micron thick. Both the surface layer and the 

bulk have an exponential distribution of trapping states, which is at 

the heart of the Scher-Montroll theory of dispersive transport [3], 

and the surface layer has a higher concentration of traps. Once the 

thickness (L) of the sample is determined (by capacitance 

measurements), this theory has only three parameters to fit the 

data, the thickness of the surface layer (d), the dispersion 

parameter (α) which is assumed to be equal in the surface and bulk 

thereby giving universality, and the ratio of traps in the surface 

layer to traps in the bulk (c1/c2). This theory is able to predict the 

spike, plateau and tail semi-quantitatively as can be seen in Fig. 6 

(the predicted slope of the initial spike is a little too small). The 

parameter ranges which can fit this data are:  

(1) 10 < c1/c2 < 30 - When this ratio is less than 10 a cusp 

develops. When this ratio is greater than 30 a double knee appears 

in the log-log plot which is not observed experimentally. The 

reason for the double knee is that charge held up in the surface 

region comes out much later, and there are two distinct arrival 

times visible on the logarithmic scale. This manifests itself as a 

broad tail on a linear scale. 
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(2) 0.3 < d < 1.2 µm - At d = 0.3 µm the curve decays. At d = 1.2 

µm a double knee appears in the log-log plot.  

(3) 0.75 < α < 0.85 - At 0.85 a cusp develops. At 0.75 the curve 

decays too much. Therefore α has to be quite close to the value of 

0.80.  

If the electron-beam energy is increased so that charge 

carriers are created in some of the bulk as well as the surface, there 

are systematic changes in the transient current as can be seen in 

Fig. 5, where the label on the curves is the depth at which the 

electron beam generates the charges. These curves can be predicted 

with two-layer theory with just one set of the three parameters as 

can be seen in Fig. 6. Their range is:  3 < c1/c2< 15, 1.0 < d < 1.7 

µm, 0.75 < α < 0.85. The agreement is quite compelling.  

This theory has some shortcomings: the range of parameters 

over which data can be fit is narrow, the electric field dependence 

of the mobility has not been accounted for, and the surface layer 

has not been independently detected. On the other hand, all of the 

observed transient’s shapes are predicted and the agreement 

between theory and experiment, even when the charge generation 

depth is varied, is compelling.  Some basic elements in the theory 

almost certainly correspond to TOF experiments and the results do 

suggest that charge transport in MDPs is dispersive, with the 

dispersion parameter α of about 0.8. 
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Figure 1. A current transient (blue solid line) with a theoretical curve added 

(red circles) - see text (Ref. 1, Fig. 1a). The sample thickness was 14 microns 

and the electric field was 43 V/µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. w (see text) vs. electric field (Ref.  2, Fig. 3). 
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Figure 3. The data of Figure 1 plotted log current vs. log time. (Ref. 1, Fig. 1b 

replotted). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Log-log plot of a 17.5 µm thick sample for electric fields of 4, 28, and 

56 V/micron, showing universality over an electric field range spanning more 

than one decade. Note the universality also applies to the cusp (Ref. 1, Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Current transients from a 16 µm thick film with variable electron 

beam energy, from 7 to 46 keV corresponding to charge generation depths of 

1.5 µm to 16 µm (approximately uniform generation) as indicated by the graph 

labels. The 16 µm curve's vertical amplitude was divided by 3 so that it can be 

seen on the graph (Ref. 1, Fig. 2a).       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Fits of the experimental data of Fig. 5 using the two-layer model with 

L = 16 µm. Curves are labeled by their charge generation depths. The best fit 

occurs with a surface layer d = 1.4 µm, a trap concentration ratio c1/c2 = 7 and 

dispersion parameter α = 0.80. Each curve is vertically scaled by the 

corresponding electron energy, except for the 46 keV curve (labeled by the 16 

µm sample thickness) which is also reduced by a factor of 3 to place it on the 

graph (Ref. 1, Fig. 4a). 
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