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Abstract
The effect of the substrate wettability on the deposition of

picolitre droplets by drop-on-demand technology is investigated

experimentally. Substrates with a broad range of wettabilities are

considered with contact angles ranging from 19∘ for water on

glass to 118∘ for water on a super-hydrophobic plasma-treated

glass slide.

Droplet profiles are recorded using high-speed imaging. The ef-

fect of surface wettability on the drying of water droplets is in-

vestigated and compared with models and experiments from the

literature. Results are presented for picolitre droplets and exper-

imental conditions relevant to inkjet printing. The cases of the

pinned contact line and the moving one with a constant contact

angle are both addressed.

For colloidal fluids, the formation of the deposit is further in-

vestigated using an inverted microscope coupled to a particle-

tracking velocimetry system. This experimental technique allows

us to track individual solute particles during the various stages

of the deposition. Preliminary results show the promise of this

technique for characterizing internal flows within the droplet.

Introduction
For inkjet printing applications, control of the drying of an

evaporating droplet and the morphology of the resulting deposit is

crucial. It is therefore necessary to understand the basic processes

underlying the drying of inkjet droplets and, for colloidal solu-

tions, to develop experimental tools to investigate the mechanisms

governing internal flows and their influence on the final deposit.

The drying of sessile droplets has been the object of a number

of works in the past decade, including Refs. [2, 3, 5, 7] among

many others. It is commonly assumed that droplet evaporation is

controlled by diffusion as in the theoretical work by Popov [7],

which we will take as a reference throughout the rest of this arti-

cle. Despite many studies on droplet evaporation, the validity of

the model by Popov has only recently been demonstrated across

a wide range of contact angles for microlitre droplets [4]. The

first part of this study presents experimental results for the dry-

ing of picolitre droplets, a scale more relevant to inkjet printing.

Experimental data obtained on surfaces with a wide range of wet-

tabilities are compared with evaporation models for two modes

of drying: pinned contact line [7] and moving contact line with a

constant contact angle.

Depending on the application, it may be required that the

final deposit should be as homogeneous as possible, e.g. for con-

ductive tracks, or, at least, of controlled geometry. The character-

istics of the final deposit are strongly related to the drying con-

ditions and more specifically to internal flows, e.g. evaporation-

driven flow, Marangoni flow. The well-known “coffee-ring” ef-

fect, for instance, results from the strong evaporative flux near

the contact line that drives the fluid (and solid particles) away

from the droplet centre, thus forming a ring-shaped deposit [2].

Recently, several studies have started to measure internal flows

quantitatively in drying droplets but they focus on the microlitre

scale, e.g. [1, 6]. The second part of this study presents pre-

liminary results for the characterization of internal flows inside

a drying picolitre droplet. The velocity fields are measured us-

ing particle-tracking velocimetry and compared with theoretical

predictions.

Drying of water droplets on various solid sub-
strates.

In this section, we investigate the drying of picolitre water

droplets on a variety of solid substrates covering a range of appar-

ent contact angles between 20∘ and 120∘.

Evaporation model

In order to describe the evaporation of a picolitre water

droplet sitting on a solid substrate, we follow the theoretical ap-

proach proposed by Popov [7]. Similar to the earlier work by

Deegan et al. [2, 3], the model by Popov assumes that the evapo-

ration of the droplet is governed by diffusion of the vapour from

the droplet interface to the ambient atmosphere. In this case, it

is demonstrated that the evaporative flux is not constant along the

liquid-gas interface and that evaporation is stronger near the con-

tact line.

The droplet has the shape of a spherical cap, which is a

reasonable assumption given the low value of the Bond number

(≈ 10−4) for such small droplets. Therefore, the mass M of the

droplet is given by

M = ρ f πR3 cos3 θ −3cosθ +2

3sin3
θ

, (1)

where ρ f is the density of the fluid, R is the radius of the circle

formed by the contact line, amd θ is the apparent contact angle.

Assuming no thermal effect, no Marangoni flow and a quasi-

steady process so that at each instant the shape of the droplet and

the corresponding evaporative flux are calculated based on equi-

librium conditions, the evaporation rate is given by [7]
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dM

dt
=−πRD(ns −n∞)

[

sinθ

1+ cosθ

+4

∫

∞

0

1+ cosh(2θτ)

sinh(2πτ)
tanh((π −θ)τ)dτ

]

, (2)

where D is the diffusivity of water vapour in air, ns is the satu-

ration vapour density of the fluid and n∞ is the vapour density in

the ambient atmosphere, far from the droplet (n∞ = RH×ns, with

RH the ambient relative humidity).

When the contact line is pinned, the radius R of the droplet

is constant and the contact angle varies with time. The combina-

tion of Equations 1 and 2 gives the following differential equation

governing the evolution of the contact angle during drying [7]:

dθ

dt
=−

D(ns −n∞)

ρ f R2
(1+ cosθ)2

[

sinθ

1+ cosθ

+4

∫

∞

0

1+ cosh(2θτ)

sinh(2πτ)
tanh((π −θ)τ)dτ

]

. (3)

Equation 3 is solved numerically using a fourth-order

Runge-Kutta algorithm (using the function ode45 in Matlab). The

drying time t f ,R is determined when the contact angle reaches

zero. For hydrophilic surfaces, it is possible to use a small-angle

approximation to obtain an analytical solution of Equation 3. Us-

ing this approximation, Popov [7] found the following approxi-

mate drying time:

t̃ f ,R =
ρ f πR2θ

16D(ns −n∞)
. (4)

Another mode of drying is when the contact line does not pin

the surface. If we assume that there is no hysteresis, the contact

angle remains constant and the radius of the contact line varies.

With R fixed, the combination of Equations 1 and 2 yields, after

integration and using the initial radius R0 of the contact line at the

start of drying,

R2 =−2
D(ns −n∞)

ρ f

sin3
θ

cos3 θ −3cosθ +2

[

sinθ

1+ cosθ

+4

∫

∞

0

1+ cosh(2θτ)

sinh(2πτ)
tanh((π −θ)τ)dτ

]

t +R2
0. (5)

The drying time t f ,θ is obtained when R=0.

Experimental
Visualisation setup

Picolitre droplets of water (ultra-high purity water) are gen-

erated using a Microfab nozzle (Horizon Instruments) with a

piezoelectric driver. The diameter of the nozzle orifice is 53µm.

Side-view images of drying droplets are taken using a high-speed

camera (Photron APX RS) coupled to a long working distance

microscope objective (20×, NA 0.4, Nikon M plan) and a tube

lens ( f = +200mm). The acquisition frequency is 400Hz, the

shutter speed is 4µs and the pixel size is 0.6×0.6µm2. Droplets

are illuminated parallel to the axis of the camera, from the back,

by a high-intensity light source (Thorlabs HPLS-30-02). Images

of the droplet profiles are post-processed using in-house Mat-

lab post-processing routines in order to extract variables such as

contact-line radius, contact angle, droplet volume, etc. All these

routines were validated separately and rely on the assumption that

the shape of a drying droplet can be described by a spherical cap.

The temperature and relative humidity of the ambient atmo-

sphere are critical parameters for the drying process. Temperature

is monitored by a type-K thermocouple located behind the noz-

zle in order to reduce radiative losses related to the light source.

Relative humidity is measured using a thermohygrometer (Cole

Parmer). For the different datasets presented in the following,

temperature varies between 32.9∘ and 35.5∘, and the relative hu-

midity varies between 0.40 and 0.46. The thermophysical prop-

erties of water used in the calculations are calculated based on

measured temperatures and humidity ratios.

Surface preparation
Three different surfaces were used to assess the drying of

picolitre droplets. The first surface (surface A) is a microscope

slide, made of glass, taken from the box and rinsed with ultra-

high purity water. The cleaning is not very thorough and there-

fore the contact angle is approximately 57∘ and droplets tend to

pin to the surface during drying. The second surface (surface B)

is a similar microscope slide but cleaned more thoroughly using

Decon 90 (2w/w% in water). The contact angle is lower (approxi-

mately 19∘) and both drying modes are observed (constant radius

and constant contact angle). The third surface (surface C) is pre-

pared by spin coating and annealing a solution of polybutadiene

in toluene onto a polished silicon wafer. The surface subsequently

undergoes plasma fluorination in the presence of CF4 gas for ten

minutes at a power of 30W. The complete procedure is described

in Ref. [8]. This surface is superhydrophobic and yields a contact

angle of approximately 170∘ for large droplets (µL). However,

for picolitre droplets, the contact angle is approximately 118∘.

Droplets do not pin during drying on surface C.

Results
Table 1 compares the calculated drying times, in the two dif-

ferent modes of drying (constant R and constant θ ), with experi-

mental data obtained for different surfaces. Contrary to what was

observed for mm-sized droplets by Gelderblom et al. [4], the pre-

dicted drying times are not in good agreement with the experi-

mental ones. The model largely underestimates the experimental

results. Such large discrepancy is surprising and we are currently

investigating its possible causes. The ambient temperature and

humidity close to the droplet have a significant effect on the pre-

dicted drying rate. Their monitoring may not be adequate in the

current setup and it will be improved in the future.

Nevertheless, a good agreement is found if the discrepancy

between the experimental and theoretical evaporation rates is ac-

counted for by normalizing the data. Figures 1 to 3 show the

droplet mass normalized by its initial value as a function of

a dimensionless time t/t f during evaporation on different sur-

faces. As predicted by the model by Popov, the mass of a pinned

droplet decreases almost linearly when the contact angle is small

(θ = 19∘) but becomes nonlinear at larger contact angles (θ = 57∘

and 118∘). In the constant-contact-angle mode, the mass of the

NIP 27 and Digital Fabrication 2011     Technical Program and Proceedings 291



Predicted and experimental drying times for the three surfaces

under test. V is the droplet volume. Observed drying modes

are either pinned contact line (R = ct) or constant θ (θ = ct).

θ V t f ,R t̃ f ,R t f ,θ t f ,exp mode

(∘) (pL) (s) (s) (s) (s)

A 57 24 0.31 0.29 0.41 0.67 R = ct

B 19 13 0.15 0.15 0.20 0.54 both

C 118 8 0.20 0.10 0.21 0.91 θ = ct

droplet decreases nonlinearly regardless of the contact angle.

For all the surfaces tested here and for both drying modes,

there is a very good agreement between the model and the ex-

perimental results when the data is normalized. The difference

between the two modes is most visible in Figure 2, for surface

B, where two droplets with a moving contact line and one pinned

droplet show very different drying behaviour. The models pre-

dict that drying should be faster for pinned droplets than in the

constant-contact-angle mode. Indeed, the drying time is approx-

imately 30% longer for surfaces A and B. However, it is almost

the same for surface C so the difference between the two modes

seems more important for droplets with a small contact angle.
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Figure 1. Normalized mass as a function of normalized time during drying

on surface A (θ = 57∘). The blue line is the model prediction for the pinned-

contact-line mode. The red line is the model prediction for the constant-

contact-angle mode. The black dashed line is a guide for the eye represent-

ing a linear decrease of the droplet mass. Experimental data are for ten

droplets. All the droplets stayed pinned during most of the drying process.

Advanced measurements techniques for the
characterization of internal flows

In this section, we present preliminary results concerning the

development of advanced measurement techniques for the charac-

terization of internal flows during the drying of inkjet droplets.

Experimental
Picolitre droplets of water are generated using the same de-

vice as described in the previous section and jetted onto a regular

microscope slide (glass, surface A). An inverted microscope has

been developed in order to take images of the droplets through

the substrate, from below. A long-working distance objective lens

(50×, NA= 0.55) is coupled to a digital video camera (JVC TK-
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Figure 2. Normalized mass as a function of normalized time during drying

on surface B (θ = 19∘). Experimental data are for three droplets. One droplet

stayed pinned during the drying process (stars), the others dried according

to the constant-contact-angle mode (circles). Colours are the same as in

Figure 1
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Figure 3. Normalized mass as a function of normalized time during drying

on surface C (θ = 118∘). Experimental data are for three droplets. All the

droplets dried according to the constant-contact-angle mode. Colours are

the same as in Figure 1

S350EG) aquiring images at the rate of 25Hz. The droplet is il-

luminated from above by a blue LED light source. The angle of

incidence of the light source is adjusted in order to minimize re-

flections in the field of view. Images are taken in a plane close to

the substrate but not accurately determined.

The droplet is seeded with polystyrene spheres (Bangs Lab-

oratories), with a diameter of 395nm at a concentration of

0.01w/w%. These solid particles scatter light and they are used

as tracers to follow the flow inside the drying droplets. Images

are exported into Matlab and the location of tracer particles is de-

tected to a sub-pixel accuracy. The displacement of the particles

between images is calculated using a particle-tracking algorithm

[9], which yields velocity fields inside the drying droplet.

An example of an image obtained with this setup is provided

in Figure 4. In addition to convective motion, tracer particles un-

dergo Brownian motion. In order to separate between convective

flow and Brownian motion, it is necessary to average the velocity

fields either in time or in space. Indeed, since Brownian motion

makes particles move in random directions, its contribution to the

average velocity is nil and we are left with only the contribution of

the convective flow. We take advantage of the axisymmetry of the
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droplet and convert velocity fields in polar coordinates. Velocity

fields are subsequently averaged spatially within the four regions

depicted in Figure 4. In our experiments, no more than 25 tracer

particles are identified in each region. Future experiments will in-

clude a larger number of tracers in order to improve the quality of

the data.

Figure 4. Example of image obtained with the inverted microscope. The

green line indicates a circular fit of the contact line. The inside of the droplet

is separated into four different regions for spatial averaging.

10µm

1

2

3

4

Results
Figure 5 shows the evolution of the radial velocity during

drying averaged over the four regions defined in Figure 4. The

velocity in regions 1 and 4 seems to remain close to zero through-

out drying. This is expected in region 1, which is close to the

centre of the droplet where velocity is expected to be small. Re-

gion 4 suffers from an insufficient number of detected tracers

and it is difficult to draw conclusions. However, the velocity in-

creases exponentially near the end of drying in regions 2 and 3.

The divergence of the velocity field is due to a stronger evapora-

tion near the contact line with respect to the apex of the droplet.

This evaporation-driven flow drives particles towards the contact

line and it is responsible for the well-known “coffee-ring” effect

[2, 3, 5]. According to the theory [3, 5], the velocity is expected to

increase as (1−t/t f )
a, where a =−1. The exponent a is obtained

from our experimental data using a linear fit (Figure 5, insert). We

obtain a ≈−1.07, which is in good agreement with the theory.

Conclusion
In a first part, the drying of picolitre water droplets on a

range of surfaces has been investigated. We compared our ex-

perimental results with diffusion-controlled evaporation models

for two modes of drying: pinned contact line and constant con-

tact angle. Droplet mass decreases linearly when the contact line

is pinned and the initial contact angle is small. However, the de-

crease becomes more nonlinear for pinned droplets with larger

contact angles and in the constant-contact-angle mode, regardless

of the contact angle. Droplets are expected to dry faster when they

are pinned throughout drying, especially for low contact angles.

The models overpredict the evaporation rate and experiments are

in progress to determine the cause of this discrepancy.

The second part of the paper presented preliminary results

regarding the characterization of internal flows in a drying droplet

using particle-tracking velocimetry. As expected, the flow is di-
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Figure 5. Evolution of the radial velocity inside the droplet with time during

drying. The velocity is space-averaged inside regions 1 (blue), 2 (red), 3

(green) and 4 (magenta). Insert: Radial velocity inside regions 2 and 3 in

logarithmic scale for comparison with the theory. Linear fittings yield a =

−1.05 in region 2 and a =−1.09 in region 3.

rected radially towards the contact line and the velocity diverges

at the end of drying. The exponent of the velocity increase was

measured and it is in good agreement with theory. The experi-

mental setup is currently being improved in order to increase the

image quality and the time resolution of the measurements.
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