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Abstract 
Ongoing research of the dark storage test for print images 

has revealed several factors which influence the results.  Although 
it has been known for many years that exposure to light can 
‘bleach’ or whiten media that has yellowed with aging, it has not 
been studied extensively in the context of its impact on the dark 
storage test.  Investigation into this phenomenon has found that 
simply exposing yellowed media test samples to office light for a 
few hours causes measurements to shift by 10%.  This research 
studied how the type, intensity, and length of light exposure 
affected media at different stages of yellowing.  One experimental 
observation is that some bleached media placed in the dark quickly 
begins to yellow again and in continued testing is indistinguishable 
from unbleached media.  Moreover, the temporary whitening of 
media during measurements in the dark storage test is best avoided 
as it can have considerable repercussions on the data analysis. 

 

Introduction 
Research conducted during the past 5 years has identified 

several noise variables which affect the consistency of thermal (i.e. 
dark storage) test results with respect to media yellowing [1,2].  
This paper will describe a series of experiments that focused on the 
impact of light on the dark storage test.  Although samples are not 
exposed to light while in the test chamber at elevated temperature, 
they are likely to be exposed to light both prior to and after each 
test cycle. 

All the data presented in this paper will be with respect to 
unprinted media samples and their behavior in the dark storage 
test.   A figure of the test sample and its preparation is described in 
a prior paper [3]. 

 

Experimental Results and Discussion 
As test samples are measured, they are exposed to light by the 

measurement device.  Employing a method identical to one used in 
an earlier study of light sensitive inks [4], the measurement device 
was instructed to repeatedly measure the same location of a 
‘yellowed’ thermal test sample.  Although this is not typical 
practice for measuring these samples, the purpose was to 
understand the influence of the measurement device on the sample 
and as a means of evaluating the sample’s response to a tightly 
controlled dosage of light.  Results can be found in Figure 1.  With 
each repeated measurement—occurring about every 3 seconds—
the sample ‘whitens’ as revealed by decreasing Delta E 
measurements (i.e. it is changing back to its original color).  The 
small increase in Delta E at measurement 50 corresponds to a 
delay between measurements of about 7 seconds as the 
measurement sensor rechecked the white calibration reference 
block away from the sample.  This recovery of Delta E in the 
absence of light was observed in the earlier study on light sensitive 
inks and was verified through subsequent testing. 

The two media shown in Figure 1 are representative of all 
media tested.  Note that for the purpose of this study, the high 
initial delta E was achieved through prior exposure of test samples 
to ozone before placing in the thermal test [5].  
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Figure 1.  Repeatedly measuring same sample location results in bleaching 
the sample as it is exposed to high intensity flashes of halogen light for each 
measurement by the Gretag Spectrolino measurement instrument. 

Thermal test samples may also receive incidental light from 
the ambient office conditions while being removed from the test 
chamber and in preparation for measurement.  Test samples were 
prepared by running at different durations of time at elevated 
temperature to achieve initial yellowing levels targeting 
approximately 5, 10, 15, and 20 Delta E before being exposed to 
light.  Table 1 shows measurements of media bleaching in an 
office environment at 500 lux with exposure times ranging from 1 
hour to just over 1 week.  In just 1 hour at 500 lux (0.5 klux-hours) 
the sample yellowing had decreased by about 6% Delta E.  
Exposure to office light for 1 week resulted in more than a 50% 
decrease in Delta E.  However, when samples were placed back in 
the dark at ambient conditions of 23C/50% RH, the bleaching 
began to reverse; recovering more than 10% Delta E of yellowing 
that had been originally bleached out. 

Table 1.  Media samples of varying initial degrees of yellowing 
subsequently exposed to fluorescent office light at 500 lux. 

Media 0.5 2 4 24 96
6.4 -3.3% -6.5% -10.4% -33.2% -58.0% -40.4%

10.5 -6.1% -9.8% -14.3% -37.6% -60.4% -49.5%
14.9 -5.8% -10.3% -15.0% -38.4% -60.8% -52.5%
19.3 -6.1% -11.3% -16.2% -39.7% -61.2% -54.2%
5.1 -4.9% -10.3% -15.5% -38.8% -62.3% -36.3%

10.0 -6.1% -11.8% -16.8% -38.6% -59.1% -46.5%
14.6 -6.4% -12.0% -16.9% -37.6% -57.7% -48.4%
19.5 -7.5% -12.8% -17.5% -37.4% -57.0% -49.9%

% Change in Delta E for Light Exposure 
(klux-hours)Initial 

Delta E

C

F

1 Week 
in Dark

 
 

NIP 27 and Digital Fabrication 2011     Technical Program and Proceedings 255



 

 

Table 2 shows another set of samples prepared in the same 
way but then exposed to high intensity CWF light.  Measurements 
were taken at specific intervals to match the exposure dosage with 
ambient light.  A dosage of light in ambient conditions that took 8 
hours (4 klux-hours) only required 10 minutes in the high intensity 
light; however, both bleached samples showed close to a 15% 
reduction in Delta E.  There were some signs of slight reciprocity 
failure for Media C as the light dosage increased, since at 96 klux-
hours it had changed by ‘only’ 53% Delta E compared to 60% 
Delta E with office light exposure.  After a week of exposure to 
high intensity CWF light (2880 klux-hours) the samples had nearly 
returned to their original condition prior to the thermal test.  But 
once samples were placed back in the dark, the bleaching process 
began to reverse and yellowing returned at a much greater rate than 
if the samples had been left unbleached.  However, this may have 
been a side effect of having pre-conditioned these samples with 
ozone. 

 

Table 2.  Media samples of varying initial degrees of yellowing 
subsequently exposed to high intensity CWF light at 24000 lux. 

Media 4 24 96 2880
6.8 -9.8% -26.9% -49.7% -92.3% -71.2%

10.5 -12.0% -30.1% -53.3% -93.7% -80.0%
14.7 -12.8% -30.8% -53.5% -93.6% -83.6%
19.4 -13.2% -31.5% -53.1% -92.8% -84.6%
6.2 -15.7% -37.4% -60.3% -97.6% -66.1%

10.0 -16.0% -36.2% -57.8% -96.2% -76.8%
15.6 -15.7% -35.3% -56.4% -95.0% -82.1%
20.1 -15.3% -34.5% -55.0% -93.7% -83.9%
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Delta E
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The next experiment explored the impact of light bleaching of 

thermal test samples between each test cycle.  One set of samples 
was always kept in the dark, having less than 10 lux ambient light 
exposure during transport and measurement (only being exposed to 
bright light briefly from the measurement instrument), another set 
was exposed to office light for 4 hours (2 klux-hours exposure), a 
third set was exposed to high intensity CWF light (85 klux-hours 
exposure), and the final set was exposed to high intensity Xenon 
light (also 85 klux-hours exposure).  These last two sample sets 
were intended to gain knowledge about what effect long term 
office light exposure may have on both the thermal test and real 
life dark storage. 

Each sample was initially measured in the dark (less than 10 
lux), then placed in thermal test at 85C/50% RH for 160 hours, and 
then transported in the dark to another darkened room for 
measurement.  After which the samples designated for light 
exposure were exposed to light, then all samples were measured 
again, including the “always dark” control before all were placed 
back in thermal test for another 160 hours. 

Table 3 shows measurements from this test at 160, 320, and 
640 hours (the 480 hour measurements were omitted for visual 
clarity).  Paired with each thermal test cycle measurement is a 
measurement titled ‘Repeat’, which is the measurement taken after 
the designated light exposure for that sample.  The “always dark” 
control samples have a slightly lower Delta E because of the small 
dose of light received a few hours earlier during its first 
measurement at the conclusion of each thermal test cycle. 

The samples bleached with office light initially lost between 
5-9% Delta E at the beginning of the test, but with each thermal 
test cycle and subsequent dose of light, the impact diminished to 
between 2-5% at the end of the test.  The high intensity CWF and 
Xenon light resulted in much greater bleaching: 20-30% at the 
conclusion of the first 160 hour thermal test cycle and 10-20% at 
the conclusion of the final 160 hour cycle after 640 hours of 
cumulative thermal testing.  And despite different spectral power 
distributions, both CWF and Xenon light had similar bleaching 
impact as determined by equivalent dosage in lux-hours. 

The most fascinating observation from this experiment was 
that samples exposed to light would yellow more rapidly than the 
dark control during the next thermal test cycle, although usually 
not enough to completely reverse the impact of bleaching. 
However, some media bleached with Xenon light yellowed more 
in subsequent thermal testing.  This is most apparent with Media 
X, a plain paper, which yellowed more than the dark control in the 
thermal test cycles, overcoming significant bleaching in the 
process. 

 

Table 3.  Media samples in thermal test with varying types of 
light exposure between each thermal test cycle. 

Media Condition 160 Repeat 320 Repeat 640 Repeat
Dark 4.49 4.46 7.35 7.32 11.64 11.63 11.62

Office 4.51 4.11 7.26 6.88 11.57 11.17 11.27
CWF 4.43 3.10 6.92 5.11 10.60 8.33 8.65

Xenon 4.58 3.08 7.08 4.95 10.77 8.20 8.52
Dark 5.85 5.82 9.98 9.96 18.39 18.38 18.31

Office 5.88 5.60 9.98 9.68 18.18 17.80 17.83
CWF 5.85 4.63 9.71 8.24 17.39 15.37 15.65

Xenon 5.85 4.73 9.93 8.57 17.78 16.20 16.50
Dark 3.76 3.74 4.75 4.75 6.19 6.14 6.14

Office 3.80 3.48 4.84 4.48 6.17 5.90 5.94
CWF 3.85 3.09 4.79 3.99 5.86 5.09 5.19

Xenon 3.84 3.20 4.93 4.20 6.32 5.63 5.64
Dark 4.19 4.17 6.70 6.69 11.24 11.18 11.18

Office 4.11 3.85 6.49 6.23 10.88 10.40 10.50
CWF 4.13 3.19 6.45 5.21 10.47 8.42 8.78

Xenon 4.02 3.02 6.20 4.91 10.10 8.06 8.37
Dark 3.71 3.69 5.26 5.24 7.14 7.11 7.13

Office 3.63 3.37 5.12 4.88 7.00 6.70 6.83
CWF 3.68 2.81 5.18 4.22 6.71 5.79 5.96

Xenon 3.69 2.72 5.10 4.04 6.53 5.53 5.65
Dark 3.57 3.55 5.04 4.98 7.00 6.95 7.00

Office 3.54 3.24 4.90 4.64 6.77 6.44 6.56
CWF 3.55 2.58 4.88 3.77 6.37 5.25 5.41

Xenon 3.56 2.59 5.21 3.90 6.89 5.60 5.73
Dark 6.45 6.44 9.40 9.35 14.47 14.42 14.39

Office 6.58 6.07 9.40 8.87 13.98 13.44 13.51
CWF 6.56 4.72 9.02 6.83 13.44 10.72 11.09

Xenon 6.51 4.66 9.11 6.79 13.38 10.63 10.99
Dark 11.09 11.06 16.00 15.97 26.81 26.76 26.72

Office 11.18 10.53 15.86 15.23 26.75 25.86 26.00
CWF 11.13 8.45 15.44 12.33 26.57 21.71 22.46

Xenon 11.37 8.29 15.68 12.14 26.24 20.98 21.70
Dark 3.17 3.12 4.91 4.86 7.02 6.93 6.86

Office 3.54 3.27 5.22 4.97 7.28 6.97 6.93
CWF 3.49 2.63 5.09 4.08 6.83 5.81 5.77

Xenon 3.48 2.65 5.59 4.39 7.76 6.61 6.53
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The final light bleaching experiment further examined the 

diminishing impact of light bleaching with repeated light exposure.  
The test was designed to begin with completely yellowed samples.  
These samples would then be bleached with a consistent exposure 
of 100 klux-hours of CWF light.  The bleached media samples 
would then be returned to a fully yellowed state to be bleached 
once again.  To make this possible in a short period of time, the 
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media samples were pre-conditioned with ozone.  Doing so 
allowed the porous photo papers in the test to quickly reach Delta 
E values of 30-50.  And before each exposure to light, the media 
samples were run in the thermal test for 160 hours at 85C/50% RH 
to ensure that they had once again reached maximum yellowing. 

Figure 2 illustrates the cycling of this test with two media.  
Media C is a porous photo paper while Media D is a swellable 
photo paper and consequently unaffected by the ozone pre-
exposure and thus did not yellow as much at the start of the test.  
Although the porous photo paper had already nearly reached 
maximum yellowing at the beginning of the test and the swellable 
photo paper was still attaining greater yellowing with each 
subsequent thermal test cycle, the impact of the light bleaching on 
the two was surprisingly similar.  As seen in Table 4, Media C and 
D both experienced about a 31% decrease in Delta E with light 
bleaching after the first test cycle, and both experienced about a 
16% decrease in Delta E after the fifth test cycle.  Because the 
swellable photo paper was still yellowing throughout the test, the 
absolute magnitude of the bleaching Delta E was increasing even 
as the percentage of total Delta E was decreasing. 
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Figure 2.  Impact of repeated light bleaching of media samples alternating 
with cycles of thermal testing. 

 
It should be noted that not all porous photo papers were able 

to sustain their maximum Delta E throughout the test because the 
thermal test cycle was insufficient to be able to fully recover the 
yellowing of the bleached media sample. 

 
 

Table 4.  Impact of light bleaching on media samples in thermal 
test.  Same light exposure (100 klux-hours) at conclusion of 
each thermal test cycle (160 hours per cycle). 

 

Media Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
A -28% -22% -19% -17% -16%
B -31% -24% -21% -19% -18%
C -31% -23% -20% -17% -16%
D -32% -21% -18% -18% -17%
E -33% -24% -21% -19% -17%
F -44% -34% -29% -26% -24%
G -50% -38% -33% -29% -26%
H -43% -32% -27% -24% -22%
I -33% -23% -19% -16% -14%
J -50% -39% -34% -31% -29%
K -32% -25% -21% -19% -18%
L -44% -34% -29% -25% -22%
M -40% -31% -27% -25% -23%
N -42% -35% -31% -29% -27%
O -20% -16% -14% -13% -13%
P -26% -21% -19% -17% -16%
Q -29% -22% -20% -17% -17%
R -39% -30% -26% -23% -21%
S -41% -31% -27% -24% -22%
T -36% -26% -21% -18% -16%
U -39% -29% -25% -22% -20%
V -41% -32% -28% -25% -23%
W -41% -31% -27% -24% -22%

Impact of Light Bleaching (% change in Delta E) 
after Thermal Test Cycles at 85C/50%RH

 
 
 

Conclusion 
The purpose of these experiments was to further understand 

the impact of light bleaching of media samples in dark storage 
testing [6].  This is just one of many factors that have been 
identified which can influence the results and conclusions drawn 
from dark storage testing. 

It was found that exposure to office light for a few hours can 
have a measurable impact on the recorded Delta E values of the 
media samples.  Table 5 shows measurements of Media Y in a 
thermal test at 71C/50% RH.  In the first row are the measurements 
of Delta E for the sample kept in the dark.  The second and third 
rows illustrate the impact on the Delta E measurements if the 
Media Y sample was exposed to office light for 1 hour or 4 hours 
respectively.  At a failure threshold of 10 Delta E, the time to 
failure for a sample kept in the dark is 574 hours.  However, for 
samples exposed to light, the time to failure increased to 631 hours 
with 1 hour exposure to office light at each measurement interval 
and to 673 hours with a 4 hour exposure to office light. 
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Table 5.  Impact of light bleaching on media in thermal test.  
Same light exposure (100 klux-hours) at conclusion of each 
thermal test cycle (160 hours per cycle). 

Media Y 160 320 480 640 800 Failure
Dark 3.97 6.79 8.94 10.74 12.40 574

1 Hour 3.74 6.38 8.40 10.10 11.65 631
4 Hours 3.58 6.11 8.05 9.67 11.16 673

Delta E Measurements after Thermal Test 
Hours at 71C/50% RH

 
 
 
Therefore, while 1 hour of office light bleaches the sample by 

6% Delta E, it lengthens the failure time by 10%.  Likewise, the 
10% drop in Delta E caused by bleaching the sample with 4 hours 
of office light results in a corresponding 18% increase in the length 
of time to failure. 

However, the Arrhenius method requires testing at multiple 
temperatures and consequently the impact of light bleaching 
during each of those thermal tests can undergo many different 
permutations.  Table 6 demonstrates several different scenarios 
when using the Arrhenius method to predict life estimates in years 
at 23C from thermal tests run at 71C, 78C, 85C, and 92C. 

 

Table 6.  Impact of light bleaching from office light on Arrhenius 
method evaluated at 71C, 78C, 85C, and 92C to estimate life in 
years at 23C. 

71C 78C 85C 92C
Off (Dark) Off (Dark) Off (Dark) Off (Dark) 46.0

1 Hour 1 Hour 1 Hour 1 Hour 50.6 10%
4 Hours 4 Hours 4 Hours 4 Hours 54.1 18%

Off (Dark) Off (Dark) Off (Dark) 1 Hour 35.5 -23%
Off (Dark) Off (Dark) Off (Dark) 4 Hours 29.7 -35%

1 Hour Off (Dark) Off (Dark) Off (Dark) 62.9 37%
4 Hours Off (Dark) Off (Dark) Off (Dark) 78.1 70%

Life 
Estimate

% 
Deviation

Light Bleaching Impact on Arrhenius Method for Media Y
Lighting Condition during Measurement

 
 
 
If light bleaching is consistent with each sample measurement 

at all test temperatures, then the deviation in failure time observed 
at one temperature will propagate at the same magnitude to the life 
estimate calculated using the Arrhenius method.  However, if light 
bleaching is inconsistent across the different temperatures the 
possible impact can range from a 23% decrease or 37% increase in 
life estimates with 1 hour exposure to typical office light, and can 
range from a 35% decrease to 70% increase in life estimates with a 
4 hour exposure to office light.  Because ambient light exposure 
can have such a large influence on thermal test results, it has been 
the authors’ standard practice the past few years to transport and 
measure these samples at very low light levels [5]. 

In addition to increasing the difficulty in achieving consistent 
results between test laboratories conducting thermal testing, light 
bleaching is also of interest to conservators who are seeking to 
reverse the yellow stain of aging images [7, 8].  While this study 
focused on inkjet media, the data may be useful when combined 

with others’ research into understanding the behavior of various 
media technologies to light bleaching and further discourage the 
use of light as a means of restoring yellow stained images. 
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