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Abstract 
The roll-to-roll manufacturing process is believed to significantly 
reduce the cost-price of large area organic photovoltaic systems. 
Therefore, we build up knowledge base concerning the influence 
of process conditions on the performance of polymer solar cells. 
Inkjet printing has been a major research in processing photoactive 
materials because of its advantage of non-contact deposition and 
the ease for patterning for various industrial processes.  A large 
area solar cell module, with inkjet printed PEDOT:PSS Orgacon™ 
(Agfa-Gevaert, Belgium)and photoactive layers (based on 
P3HT:[C60]PCBM blend) on a flexible substrate, has been 
demonstrated. Both the PEDOT:PSS and photoactive layer were 
deposited by inkjet printing. A non-chlorinated solvent was used 
for the deposition of the photoactive blend. In this contribution, 
some of the fundamental aspects of inkjet ink and substrate 
interaction, and the resulting layer homogeneity of the active layer 
in relation to OPV-device performance are investigated. 
Combining both theoretical and experimental approaches, we 
studied the layer formation on a moisture barrier. We have enabled 
to deposit homogenous PEDOT and OPV using commercially 
available inkjet heads. Furthermore, we would like to demonstrate 
the ability of using inkjet printing for fabrication of OPV devices, 
with Agfa high conductive PEDOT:PSS and Merck and 
Plextronics P3HT polymers dissolved in solution. The inkjet ink 
properties and the substrate pretreatment have been optimized in 
order to ensure a stable and robust printing and drying process. 
The flexible solar cell module illustrated a power conversion 
efficiency of 3.2% under AM 1.5 conditions. 

Introduction  
The growing interest in organic photovoltaics (OPV) can be 
explained by the promising low cost approach for the energy 
conversion. In order to reach an impact on the high power 
market on the longer term, the organic photovoltaics should 
provide high power conversion efficiency, low production 
costs and long term stability. The low cost potential is based on the 
use of low-cost materials and substrates and the very high 
production speeds which can be reached by roll-to-roll printing 
and coating techniques [1-2]. Photovoltaic devices require either a 
transparent anode or cathode. Generally a transparent conductive 
oxide (TCO) like indium tin oxide (ITO) is used as a transparent 
electrode. However, to obtain a highly conductive ITO film with 
improved crystallinity, a high temperature is required. Such a high 
temperature process can be realized on glass substrates. In such 
case the sheet resistance of a typical ITO film is about 5-15 Ω/□. 
Due to a limit in processing temperature, the conductivity of a thin 
ITO film on flexible substrates like PET or PEN is significantly 
lower. Typical reported sheet resistance for ITO on flexible 
supports is in the order of 30-60 Ω/□. Scaling up of the dimensions 
of OPV devices with ITO electrodes leads to the efficiency drops. 
Additionally, high mechanical flexibility is an important 
requirement for all layers in flexible photovoltaic devices. Under 

numerous bending cycles, the brittle ITO layer can be easily 
cracked, leading to a decrease in conductivity and as a result 
degradation of the device performance. Finally, the price of ITO 
and the requirement of expensive post-patterning demonstrate the 
necessity to look for alternatives for ITO as an electrode. Different 
types of transparent electrodes, which are mainly based on carbon 
nanotubes or different types of high conductive PEDOT:PSS, have 
been reported [3]. In general such kinds of electrodes do not 
provide high efficiency with large scale devices due to the limited 
conductivity. The sheet resistance of these materials is typically in 
the range of 200-800 Ω/□. Further increasing of the conductivity is 
possible with integration of metal grids, which are either thermally 
evaporated through micro structured shadow masks or deposited 
by a lithographic method.  Deposition of an Ag grid by diffusion 
transfer reversal has been reported. Screen printed silver grids [4] 
were demonstrated in a roll-to-roll processed OLED device. 
 
One of our major deposition technique is inkjet printing of organic 
inks for printed electronics because of its advantage of non-contact 
deposition and the ease for patterning in various industrial 
processes.  The main challenge of using inkjet technology is the 
deposition of homogenous layers of active materials onto flexible 
substrates. In this paper we demonstrate the fabrication of flexible 
OPV device with the substitution of the ITO electrode by a 
combination of an inkjet printed high conductive PEDOT:PSS and 
inkjet printed photo-active  layers. For these purposes we designed 
OPV devices on foils with a moisture barrier. Our fabrication 
method can potentially be scaled up high volume Roll-2-Roll 
production.    

Device fabrication procedures 
OPV were fabricated on 6” by 6” flexible foil substrates, as shown 
in Figure 1, onto which a silicon nitride-based moisture barrier was  
 

 

Figure 1: 6” by 6” flexible solar cell modules on foil. 

 
applied. The transparent barrier was based on low-temperature 
plasma deposited amorphous hydrogenated silicon nitride films as 
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the intrinsic moisture barrier and was stacked with planarization 
layers to spatially separate defects in these films. To limit the 
ingress of water and oxygen, the above mentioned moisture barrier 
was also applied as encapsulation stack on top of the manufactured 
OPV, as sketched in Figure 2.  
 

 
Figure 2: Schematic of a (ITO-free) OPV module  on foil. 

 
The samples were prepared in ambient atmosphere, excluding 

deposition of the cathode, which was evaporated under vacuum. 
Flexible devices were made on PEN substrates with a thin film 
barrier produced with Holst Centre technology. Cabot AG-IJ-G-
100-S1 silver nano particle ink has been used for the inkjet 
printing of the conductive grids. Immediately after printing the 
substrates are placed in a temperature controlled oven for 30 
minutes at 135°C. The resulting current collecting grid lines are 
visually inspected with a microscope, followed by measuring the 
sheet resistance (Keithley 2400 Source Meter) and cross section 
area (Veeco Dektak Profilometer) of the lines on 5 different places 
of the grid. For the inkjet experiments a FujiFilm Dimatix 
Materials Printer (DMP 2831) with 10 pl drop size print heads is 
used. The drop spacing was set to 30 μm, while the chuck 
temperature was fixed at 20°C. Using inkjet printing, the silver 
grids are covered with high conductive OrgaconTM 
PEDOT:PSS from Agfa-Gevaert.  

The bulk heterojunction solar cells have been produced using 
a[C60]P3HT:PCBM solution with non-chlorinated solvents. P3HT 
was purchased from both Merck and Plextronics, Plexcore OS 
2100 and [C60]PCBM (99%) from Solenne BV. The mixing ratio 
was 1:1 by weight. The solution contained 2 wt % of polymer. 
Both PEDOT:PSS and OPV layers were applied with layer 
thickness of 100 and 200 nm respectively. The metal cathode (1 
nm LiF, 100 nm Al) was thermally evaporated in a vacuum 
chamber through a shadow mask. The finished OPV devices were 
encapsulated with stainless steel lids using Huntsman Araldite® 
2014-1 sealer as well as using the Holst Centre thin film 
encapsulation technology. Current–voltage curves were measured 
using simulated AM 1,5 global solar irradiation (100 mW/cm2), 
using a WXS-300S-50 solar simulator (WACOM Electric Co.) 
The active area of the devices was 4 cm2. Schematic 
representation of the ITO based and ITO-free devices used in this 
study are shown on Figure 1. Life time tests were done by 
measuring the performance of the devices over time. The life time 
conditions for the samples were the following: dark at room 

temperature, dark at 45°C and illuminated using a G2 light engine 
combined with a S-bulb (Solaronix), at 1 sun, at 45°C. 

Inkjet printed PEDOT layer 
Shunt lines/grid were introduced to increase the conductivity 

in the absence of ITO, see Figure 3 (a). However, sometimes when 
high conductive PEDOT:PSS were deposited on top of the metal 
grid, a lot of pin-holes occurred and the Ag grids are not fully 
covered with PEDOT:PSS, as shown in Figure 3 (b). These pin-
holes lead to direct contact with anode and cathode, significantly 
reduce the device efficiency and life time.  
 

(a) 

(b): zoom-in of (a) 

Figure 3. Photography of inkjet printed PEDOT:PSS on top of Ag grid. 
 

For a high efficiency OPV, the layer homogeneity of the 
active layer demands a high standard smoothness. Fundamental 
understanding of the wetting behavior of PEDOT:PSS on the 
heterogeneous substrate is demanded in order to yield a more 
homogeneous layer [5-6]. Experiments were designed and 
performed in order to study the spreading and wetting behavior of 
PEDOT on the printed silver shunt lines to distinguish between the 
effect of topology versus chemical heterogeneity (and differences 
in surface energy). We deposit PEDOT with patterns on Ag and 
Silicon Nitride (SiN) substrate.  

 

Figure 4: inkjet printed PEDOT:PSS (HILHC5 IJ) on heterogeneous substrate.  
 

Figure 4 shows the effect of PEDOT wetting over an array of 
silver lines (white area in the picture) on SiN (grey area in the 
picture). It shows that a difference occurs in wetting due to the 
nature of surface energy variations. This lines become 
significantly broader on the better wetting SiN and near the 
interface a very broad patch of PEDOT can be observed. This 
implies that PEDOT ink is depleted from the surface of the silver 
and the layer thickness on silver will be less near the transition to 
SiN.  
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Figure 5: Measured surface energy of WZ SiN and Cabot silver ink. 
 

Figure 5 shows wetting envelopes of the substrate: silicon nitride 
and metal lines before and after plasma treatment. The polar and 
disperse coordinates of water, the main component in the 
PEDOT:PSS inks, show the relation between the ink and the 
substrate. If, as for the untreated substrates, the surface energy of 
the substrate is much lower than the surface tension of the ink the 
wetting, spreading, and layer formation will be poor. Large 
differences in the surface energy will cause inhomogeneous layer 
formation or even de-wetting spots. By applying a plasma 
treatment the low surface energies of both substrate materials 
increase and the difference between the two different materials 
becomes smaller, as shown in Figure 4. In such a way, the layer 
formation can be controlled and stabilized. Further improvement 
of the wetting behavior can be obtained by lowering the surface 
tension of the ink by additives, e.g. surfactants or alcohols. For 
inkjet printing a finite but low contact angle is desirable. The 
difference in surface energy between the ink and the substrate is 
the determining factor with respect to spreading of PEDOT on top 
of the silver and SiN. As a first order estimate one can compare the 
PEDOT ink to water. For water the disperse part is approximately 
22 mN/m and the polar part is about 51 mN/m. With plasma pre-
treatment, the wetting envelope can be brought closer to the 
surface energy of water and thus wetting is improved. The 
difference in the line width is mainly caused by the difference in 
the polar part of the surface energy between silver and SiN, as the 
wetting envelop shown in Figure 5. Adding surfactant to the 
PEDOT:PSS may influence the jetting behavior. Depending on 
surfactant type and concentration, the equilibrium surface tension 
of the PEDOT:PSS dispersion ranges from 20 to 40 mN/m. By 
adding certain percentage of surfactant, the surface tension of the 
PEDOT:PSS can be reduced and be suitable for this purpose[6].  

Inkjet printed OPV layer 
The bulk heterojunction solar cells have been produced using 

a[C60]P3HT:PCBM solution with non-chlorinated solvents. P3HT 
was provided from both Merck and Plextronics. The photoactive 
layer (PAL) consists of a P3HT/PCBM donor-acceptor blend is 
deposited on top of the PEDOT:PSS layer and covered with 
LiF/Al as a reflective cathode. A typical dried PAL thickness is 
about 200 nm.  

The challenge of inkjet formulation of photoactive layers 
(based on P3HT:[C60]PCBM blend) lies on the ink jettability and 
solubility. Particles precipitate from the solution and these 
aggregate in time and eventually block the inkjet nozzles. 
Observed is that an ink of PCBM/P3HT (Merck) shows sufficient 
stability for 24 hours. This time span is sufficient for the small 

scale process on a Dimatix DMP2831 printer, but it is insufficient 
to scale up towards large volume production, which demands high 
robustness and reliability.  

 

(a) solvent system A  (b) solvent system B 
Figure 6: inkjet printed Photo-Active Layer with various solvents systems. 

 
Using the Dimatix DMP2831 printer, we vary the solvent 

system in order to study the layer formation. By selecting the 
proper solvents system, the PAL layer formation can be influenced, 
as shown in Figure 6. Using of non-chlorinated solvent system B, 
we are able to deposit PAL with no pin-holes. The solvent system 
B shows reasonable stable droplet formation and reproducible 
results with respect to layer formation with an area of 30 mm x30 
mm, see Figure 6 (b).  

OPV devices were fabricated with P3HT polymer from 
Plextronics with non-chlorinated solvent systems and deposited 
with inkjet printing on a substrate with inkjet printed PEDOT:PSS.  
The deposited PAL with 100 nm in thickness.   
Figure 7 shows the OPV devices fabricated with P3HT polymer 
from Plextronics. Solvent systems and deposition techniques (SC 
vs. IJ OPV blend) were varied, in order to distinguish the device 
efficiency. The current density-voltage (JV) characteristics of the 
OPV devices were measured using a simulated AM 1.5 global 
solar irradiation (100 mW/cm2).  
 

 
Figure 7. Device performance of OPV devices with benchmark of spin-coated 
and inkjet printed PEDOT:PSS and inkjet printed PAL layers.  

 
For Plextronics P3HT polymer, it can be seen, in Figure 7, that the 
OPV devices with inkjet PAL (inkjet printed OPV indicated as red 
line in Figure 7) show efficiency of MPP=3.2%, although the 
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device with spin coated PAL has a slightly higher MPP=3.6% 
(black line).   

Conclusion 
Some of the fundamental aspects of inkjet ink and substrate 

interaction have been addressed. The resulting homogeneity of the 
active layer (PEDOT:PSS) related device performance of OPV are 
investigated. Combining both theoretical and experimental 
approaches, we have optimized the inkjet ink formulation and 
homogenous layer formation on a moisture barrier. With 
commercially available print heads, we have demonstrated the 
ability of using inkjet printing for the fabrication of 3cm solar cell 
modules, with inkjet printed Agfa high conductive PEDOT:PSS 
Orgacon™ and photoactive layers (based on P3HT 
Merck:[C60]PCBM blend) dissolved in solution on a flexible 
substrate.  

A non-chlorinated solvent was used for the deposition of the 
photoactive blend. Both the PEDOT:PSS and photoactive layer 
were deposited by inkjet printing. The properties of the inks, as 
well as substrate pretreatments have been optimized in order to 
ensure a robust printing and drying process.     

Moreover, OPV device with inkjet printed PEDOT:PSS and 
PAL shows a comparable performance with respect to the spin 
coated one.  The inkjet processed flexible solar cell module 
illustrated a power conversion efficiency of 3.2% under AM 1.5 
conditions. 
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