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Abstract 
The analysis of images of ink drops in flight can provide 

information about jet straightness, drop velocity and volume.  

However trade-offs between field of view, optical and digital 

resolution and other factors such as depth of field and optical 

distortion, limit the accuracy and amount of information available 

from a single image.  In-line, digital holograms of drops in flight 

can capture information from fields of view at least as large as the 

area of the digital sensor.  Using mathematical reconstruction 

techniques particularly suited to sparse, small objects of regular 

geometry the accuracy of measurement can potentially be sub-

micrometer on drop position and diameter. 

This paper describes our experimental apparatus, hologram 

reconstruction techniques and the results of experiments on 

imaging drops.  We also discuss techniques to improve the 

accuracy of the technique in the direction of the optical axis. 

Introduction  
Drop-on-demand (DoD) inkjet printers are used for high 

resolution imaging and, increasingly for digital fabrication. These 

applications demand high drop placement accuracy and, in some 

cases, precise control over drop volume.  Accurate measurement of 

drop direction, velocity and volume is therefore required. 

Existing techniques include taking optical shadowgraph 

images at some suitable magnification [1].  To obtain enough 

resolution to measure precisely, high magnifications are required 

and hence fields of view are restricted to one or a few drops.  At 

lower magnifications more drops can be seen but the digital 

resolution is too low to measure position accurately.  For example, 

because the pixels on photographic image sensors are typically 5 to 

10 µm square, at a magnification producing life size images on the 

camera sensor (ie 1:1 macro) a single drop is only a few pixels in 

diameter making accurate position and volume measurement 

impossible.  Even at high magnifications problems such as limited 

depth of field, optical lens distortions and thresholding issues can 

limit the measurement accuracy and introduce systematic errors. 

Drop volumes are particularly subject to error when measured 

optically as only the drop diameter can be measured.  Other 

techniques have been employed. For example, Verkouteren [2] 

weighed large numbers of drops which can give an accurate mean 

value but cannot study drop to drop variation easily.  It is possible 

to imagine using other techniques such as quartz crystal resonators 

and micro-cantilevers [2]. 

Holography is a technique in which the interference pattern 

created by the interaction of coherent light scattered from an object 

and a reference beam from the same source is recorded on film or, 

more recently, on a digital photographic sensor.  Optical 

reconstruction of film-based holograms is achieved by diffracting a 

beam, like the reference beam, through the film, producing a 

3-dimensional image.  Digitally captured holograms make possible 

mathematical reconstruction of an image which can then be 

processed digitally or used to generate visible images [3].  

In-line digital holography [4] is a simple technique applicable 

when objects are small and sparse.  In this case a single collimated 

laser beam is used to illuminate the objects and then both the light 

scattered by the objects and the unaffected beam are captured by 

an exposed digital image sensor which records the interference 

between the scattered and unscattered light.  Hence the beam acts 

as both illumination and reference. 

By using appropriate mathematical reconstruction techniques 

(see below), the position (in 3 dimensions) and size of objects 

within the field of view (ie the size of the image sensor) can be 

estimated to micrometer accuracy.  If we know that the objects are 

spherical then we can use that knowledge to employ methods that 

can improve the measurement accuracy to significantly better than 

1 µm.  If the illumination is larger than the sensor area, then even 

objects outside the geometrical field of view implied by the sensor 

size can be reconstructed, as the sensor will capture the 

interference patterns of light scattered from them. 

Experimental apparatus 

 
Figure 1. Apparatus. 

Figure 1 illustrates the experimental arrangement.  An Oxford 

Lasers Nd:YAG laser with a frequency doubled beam having  a 

wavelength of 532 nm  and a short duration pulse (~5 ns) was 

used, with appropriate optics, to produce a collimated beam 

approximately 20 mm in diameter.  This beam passes through the 

object area and then falls directly onto an exposed digital sensor 

(JAI RM-2040GE, 1600 x 1200 pixels) without any further 

intervening optics.  If the laser is coherent enough then the light 

scattered by the objects will create an interference pattern which 

can be recorded by the digital sensor. 

In some experiments a half-silvered mirror was inserted as a 

beam-splitter between the objects and the sensor so that some of 

the light was diverted to a camera (Nikon D80) with a lens 

(Tamron SP AF 90mm F/2.8 Di Macro) focused on the objects 

such that the image created was a 1:1 macro image of the objects.  

Hence the field of view of the macro image formed by the lens was 

very similar to the field of view of the holography sensor. 
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The printhead used during these experiments was the Dimatix 

SE-128, drop-on-demand, inkjet printhead.  Timing equipment, 

not shown in figure 1, was used to synchronize the firing of the 

drops, the activation of the camera sensor and the pulsing of the 

laser such that images and interference patterns produced by drops 

in-flight were recorded. 

Reconstruction techniques 
Several techniques exist to mathematically reconstruct the 

image associated with a digital hologram.  In this work we used the 

diffraction integral, transfer function (DITF) method described in 

Kreis et al. [5] to initially locate ink drops in the image and then 

the inverse-problem (IP) approach described by Soulez et al. [6] 

and Gire et al. [7] to refine the location measurement.  The initial 

reconstruction is based on solving the Rayleigh-Sommerfeld 

diffraction formula [8].  The DITF approach results in an 

algorithm involving a Fourier transform and an inverse Fourier 

transform of the form: 

W = |F-1{F{H · R} · G}|2  (1) 

G = f(x,y,z,λ) (2) 

 

where W is the reconstructed image of the hologram H, R 

represents the reference wave field (in this case a constant) and G 

is a transfer function involving only the location of the pixels to be 

reconstructed and the wavelength, λ, of the light used.  The DITF 

algorithm, the IP algorithm described below and other functions 

were implemented in a Matlab program. 

In the holograms taken during the experiments described 

below it was found that there were significant amounts of 

unwanted patterns arising from, for example, dust on optical 

elements, edges such as the edge of the printhead and from 

interference patterns arising from optical elements (for example the 

sensor protective cover). It was found to be advantageous to take a 

background image, containing no printed drops, soon before or 

soon after the image captured from drops in flight.  This 

background image is subtracted from the hologram before 

reconstruction, removing many of the unwanted elements. 

The next step is to perform the calculation summarized in 

equation (1) at appropriate z locations through the image.  In this 

way a 3-dimensional representation of the region containing the 

drops is reconstructed.  Image analysis techniques similar to those 

used to find objects in 2-D images are used to find objects in this 

3-D space.  Estimates of location and size of these objects can be 

made.  Tests with simulated holograms (see below) indicate that 

this technique, using the geometry and typical drop sizes of our 

experiments, can estimate the x, y location and drop diameter to an 

accuracy of a few micrometers.  The estimate of the z location (ie 

the direction along the optical axis) was about two orders of 

magnitude worse.  While this accuracy is sufficient for some 

purposes (particularly considering the large field of view) it is not 

good enough for experimentally investigating changes in drop 

direction and velocity and particularly drop volume. 

The inverse-problem approach is a method which can 

potentially improve the accuracy of the measurement.  In this 

technique it is assumed that the drops are spherical.  If the 

approximate location and size of a drop is known then a simulated 

hologram can be constructed and the difference calculated between 

the real and simulated hologram. 

It is possible to construct a simulated hologram as it can be 

shown [7] that a spherical object will produce a pattern on the 

sensor closely following: 
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Where J is defined by: 
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here g(x, y) is the intensity variation of a hologram centered at 

x=y=0, J1 is a Bessel function of the first kind and order 1, x and y 

are the coordinates from the centre of the hologram, z is the 

distance from the hologram to the object, r is the diameter of the 

sphere and λ is the wavelength of the light. 

 

 
Figure 2. Flow diagram of the iterative calculation method. 

Bu using appropriate iterative searching techniques the 

position and size of the drop creating the simulated hologram are 

adjusted until the simulation matches the real hologram to within a 

set amount.  In the Matlab program the DITF method (“standard” 

reconstruction) is applied to the hologram, the largest drop is 

selected and the IP process is used to refine the drop parameters.  

The simulated hologram is then subtracted from the real hologram 

and the calculation is iterated until all of the drops have been 

processed.  Figure 2 shows a flow diagram of the iterative 

technique used. 

Determining when the last particle has been processed can be 

a problem as the algorithm will continue to attempt to find 

particles and may process noise or the “ghost” patterns left after 

particle subtraction.  If the exact number of particles is not known 
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then estimates of signal-to-noise ratios or particle coincidence 

(from the ghost patterns) can be used to halt the process. 

Tests, Experiments and Results 
To test the algorithms a simulated hologram was constructed 

with 4 spherical “drops” of known location and size, using the 

techniques described above (figure 3(a)).  Initially the DITF 

technique was used alone to estimate the drop parameters.  The 

differences between these estimates and the actual values are listed 

in table 1.  The hologram was then re-evaluated using the full 

DITF+IP process and the results from this are also listed in Table 1 

where the figures presented show the absolute difference between 

the calculated value and the actual value. For each of x, y, z and r 

the figures are the mean of the values for all four drops (this is a 

similar calculation to that described by equation (5) below).   

 

 
Figure 3. (a) Simulated hologram. (b) With reduced contrast and added noise. 

To evaluate the sensitivity of the algorithms to image contrast 

and noise the simulated hologram was also degraded by reducing 

its contrast (Photoshop CS4 > image adjustments > levels) to 40% 

of the original value and introducing 10% noise (Photoshop CS4 > 

filter > noise > add noise).  The resulting image is shown in 

Figure 3(b) and the results of estimating the drop parameters are 

listed in Table 1. 

Table 1. Results of tests on the simulated hologram: errors in 

x, y, z and r. 

x y z r process 

µm µm µm µm 

DITF only 0.278 0.907 467.500 29.730 

DITF+IP 0.042 0.120 7.238 0.060 

degraded 0.128 0.178 11.844 0.462 

 

These results indicate that while using the DITF process alone 

produces a reasonable result for x and y, the z and r values are poor 

although it might be possible to improve the r value by improving 

image processing techniques.  Using the combined DITF and IP 

processes shows a significant improvement in parameter 

estimation, over 60 times for the z estimate and nearly 500 times 

better for the estimate of radius.  The estimates of parameters for 

the degraded images show a reduced correspondence with the 

original but still good enough for useful measurements except in 

the case of the along the optical axis measurement (z).  Means to 

improve this measurement are discussed below. 

Using the apparatus described above, a series of hologram 

and shadowgraph pairs were captured of drops in flight.  These 

drops were nominally 15 µm in radius and were travelling at a 

velocity of 5 ms-1. 

Figure 4 shows details from larger images and includes both 

holographic and shadowgraph images of these real ink drops in 

flight. Figure 4(a) is part of the hologram showing four patterns 

out of the 12 drops captured in total, 4(b) is the same area of the 

hologram with the background subtracted, 4(c) is the shadowgraph 

taken at the same time and of the same area as 4(a), and 4(d) is one 

of the reconstructed image slices which are part of the outputs of 

the DITF process showing white drop images on a black 

background.  From the set of reconstructed slices like 4(d) an 

estimate of the drop positions can be made and used as the starting 

point for the IP process.  A blow-up of the shadowgraph image of 

the upper drop is inserted in figure 4(c).  The drop image is only 

about 6 pixels across and as this is a 1-to-1 macro image and the 

pixels are 7.4 µm square then clearly estimating position or radius 

to better than O(10 µm) would be difficult. 

 

 
Figure 4. (a) region of hologram, (b)after background subtraction, 

(c) shadowgraph and (d) DITF reconstruction. 

Figure 5(a) shows a larger area of the original hologram 

shown in figure 4. Here all of the patterns associated with the 12 

drops are displayed.  This is the hologram after a background 

image, taken following the hologram capture, had been subtracted 

from the original image.  This image was processed using the DITF 

+ IP process described above.  As explained, after each drop is 

evaluated the best calculated holographic pattern is subtracted 

from the image before the process addresses the next drop.  Figure 

5(b) shows the image after the sixth drop to be processed has been 

subtracted.  At this point the adjusted image would be evaluated 

using DITF and the new “largest” drop chosen and its parameters 
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refined by the IP process.  This then continues until no 

holographic patterns associated with drops remain in the image. 

 

 
Figure 5. (a) Hologram before processing, (b) after six drops have been 

processed. 

To evaluate how robust the process is to background noise the 

same holographic image described above was reprocessed but this 

time with a different background image (the one taken before the 

hologram) subtracted.  This resulted in significantly different noise 

patterns in the image to be processed.  The results of processing 

these two images are listed in table 2. 

Table 2. Variation with background noise: changes to 

coordinates resulting from the use of different background 

holograms. 

x y z r 

µm µm µm µm 

0.036 0.087 36.577 0.206 

 

Table 2 shows the absolute difference between the 

measurements of each drop’s parameters made with each 

background averaged over the 12 drops as shown for x in equation 

(5) where xan and xbn are the measured x locations of the nth drop 

in each of the two images created by subtracting the different 

backgrounds. 
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These results indicate that the x, y and r are potentially sub-

micrometer in accuracy while the z measurement is not.  

Conclusions and future work 
The results presented here suggest that high resolution 

estimates of drops positions (x, y) and radius (r) can be made over 

large fields of view (and potentially beyond, given that interference 

patterns associated with drops beyond the field of view will still be 

apparent).  Unfortunately the accuracy obtained for the positions 

along the optical axis (z) does not seem to be good enough (for 

estimating jet direction for example).  Figure 6 shows a proposed 

experimental arrangement which could overcome this limitation 

and also, because the print head would be placed at 45⁰ to the 

optical axes, could include more drops in the field of view. 

In this arrangement the half silvered and full mirrors are used 

to split the laser beam so that two images are captured at the same 

moment with perpendicular views of the ink drops hence removing 

the need to rely on the z measurement in either view.  It may be 

necessary that the path length difference between the optical paths 

is greater than the coherence length of the laser to avoid unwanted 

interference between the light in the two paths. 

 
Figure 6. Proposed arrangement to improve z resolution. 
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