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Abstract
Since the advent of multiple nozzle print-heads there have

been efforts to utilize the added degree of freedom that comes with
multiple-pass printing, the mode of printing where the print-head
visits each pixel of the media more than once. The direct binary
search (DBS) algorithm has been used as an optimal searching
mechanism for signal design in digital holography, matched filter-
ing for target recognition, digital halftoning, as well as location
dependent sensor placement. An application of the DBS algo-
rithm to optimal print mask design is proposed and an example is
provided. The example showed that the number of operations for
100 trials of the DBS was 8 orders of magnitude smaller than that
for the previously proposed exhaustive search. Future efforts are
needed to improve number of operations required to confidently
(> 95% confidence) obtain a globally minimizing print mask.

Introduction
With the numerous inkjet printed devices [1], the throughput

associated with multiple nozzle arrays is necessary for large scale
manufacturing. The capability of inkjet printers to possess multi-
ple nozzle print-heads provides print jobs with higher throughput
relative to single nozzle print-heads. Since the advent of multi-
ple nozzle print-heads there have been efforts [2–6] to utilize the
added degree of freedom that comes with multiple-pass printing,
the mode of printing where the print-head visits each pixel of the
media more than once. These efforts focused on designing a print
mask (PM), a matrix used to map each media pixel to the pass of
the print-head during which ink is deposited, to reduce artifacts
(e.g. banding) caused by drop placement errors and ink migra-
tion.

In an ideal situation, we would have the print-head travel
over the media in the print-head scan direction until reaching the
width of the image, advance the length of the print-head in the
media advance direction, and repeat this process until reaching
the end of the image (i.e. the print-head would visit each pixel
of the image once and only once). However, hardware limitations
and print quality requirements make it difficult to print from all
nozzles or even adjacent nozzles at a given time. Print modes
are established to trade-off between print speed and print quality
requirements based on different media, ink, and image content.
A multiple-pass print mode optimized for halftoned images may
not be desirable or have adequate throughput for text or line art
documents, which have higher requirements on swath alignment.

Since not all nozzles should be fired at any given pass for
a multiple-pass print mode, the print-head must pass over each
pixel more than once so that there is more than one opportunity
for ink deposition. Figure 1 shows how an image can be printed
by two passes of a print-head with six nozzles. The top left im-
age of Fig. 1 is the image to be printed. On the first pass, the
bottom three nozzles pass over the image filling in the top left
pixel with the fourth nozzle, the middle pixel with the fifth noz-
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Figure 1. Example of printing an image with two passes of a print-head.

zle, and the bottom right pixel with the sixth nozzle (i.e. all of
the pixels requiring ink which are labeled with pass number 1)
as shown in the bottom left image of Fig. 1. The substrate then
moves three nozzles in the media advance direction relative to the
print-head. The print-head then passes over the image pixels its
second and final time, printing the top middle pixel from the first
nozzle and the middle left pixel from the second nozzle (i.e. all of
the pixels requiring ink which are labeled with pass number 1) as
illustrated in the bottom right image of Fig. 1. The top right image
of Fig. 1 is the (PM) used for printing the image, which is referred
to in the literature [2,3] as the checkerboard design because of the
checkerboard pattern of 1’s and 2’s in the PM. The checkerboard
PM design is often used to avoid consecutive firing of the same
nozzle and in some cases to avoid print artifacts. Due to hardware
limitations and print quality requirements, PMs other than that of
the checkerboard design may be needed.

In 1999, Yen et. al. [2] introduced two methods for PM de-
sign. First, in order to produce an imperceptable (by the human
visual system) printed pattern that covers up banding artifacts
caused by defective print-head nozzles, a two-pass 4 by 4 PM
with triangular clusters, derived from halftoning techniques [7],
was used. Second, an alternative PM was derived from generating
a super smooth dithering matrix [8], which proved to address ar-
tifacts associated with ink migration by guiding the ink migration
into a super smooth dithereing pattern indetectable by the human
eye. Subsequently, Yen et. al [3] formulated the automatic selec-
tion of a PM as a general constrained optimization problem ap-
plicable to multiple-pass print modes for multiple-level (multiple
drops per pixel), multiple-drop (multiple drops per pixel, per pass)
technologies. The method begins with a random initial solution
found by means of a greedy algorithm, followed by neighborhood
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search techniques. However, no specific guidlines were given to
consider drop placement error, which can be on the same order
of magnitude as the drop radius, or to consider the occurrence of
coalescence between neighboring drops, which affects the perfor-
mance of printed elctronics (e.g.’s shorted or open circuits).

In other work, a stochastic model considering drop evapora-
tion, drop impact, and drop placement error has been developed
in efforts to establish threshold values for deposition time differ-
ences between adjacent drops [4, 5]. These threshold values were
then used as constraints in a multiple-pass single-level PM design
problem formulated to maximize throughput (minimize the total
number of passes) while maintaining a minimum probability of
drop coalescence [6]. This exhaustive search resulted in a set of
admissible PM’s. However, the required computational intensity
deemed this approach applicable only for PM’s with less than 16
elements for a four-pass print mode.

The direct binary search (DBS) algorithm has been used
as an optimal searching mechanism for signal design in digital
holography [9], matched filtering for target recognition [9], dig-
ital halftoning [9], as well as location dependent sensor place-
ment [10].

This paper poses the DBS algorithm as a less computation-
ally intensive alternative to the exhaustive search PM design dis-
cussed earlier [6]. The exhaustive search study required a number
of operations proportional to p1 · p2 ·np1·p2 ; where p1 is the num-
ber of rows of the PM, p2 is the number of columns of the PM,
and n is the total number of passes in the print mode. However, the
DBS algorithm requires a number of operations proportional to
p1 · p2 ·n, exponentially smaller than that required for the exhaus-
tive search. The iterative nature of the DBS results in the highest
of quality of images in digital halftoning when compared to point
algorithms and neighborhood algorithms [11], which is desirable
for printing. In future work, the DBS may be used to gain in-
sight into improving the image quality of PM design with faster
algorithms (point and neighborhood), similar to digital halfton-
ing [9, 11].

The remainder of the paper is as follows. The next section
discusses generally how the DBS can be applied to PM design.
The third section gives an example of applying the DBS to PM
design with an objective of minimizing the drop coalescence and
the drop placement error. The final section gives the concluding
remarks on the results found herein.

Direct Binary Search in Print Mask Design
As discussed in the literature [9, 11, 12], the DBS is an iter-

ative search algorithm that begins with a randomly generated ini-
tial image with a uniform distribution of 1s and 0s. The algorithm
continues by sweeping through every element of the initial image
lexicographically and computes the difference in a prescribed er-
ror measure or cost function between changing the value of the
image element and keeping the value of the image element. If
changing the value of the image element improves the error mea-
sure or cost function, then the new value replaces the old value.
Otherwise, the old value is kept. An iteration is considered com-
plete once the algorithm has swept through every element in the
image. The algorithm has converged to a local minimum of the
error measure or cost function when no changes to the image are
accepted during an iteration [11].

The flowchart for the DBS algorithm taylored for PM design
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Compute error measure or cost function e 

Copy PMij into PM’ij. 1 ≤ i ≤ p1, 1 ≤ j ≤ p2 

Set i = 1, j = 1, c = 1, ctr = 0 

Set 
c=c+1 

Set PM’ij = c 

Compute new error measure or cost function e’ 

Is 
e’ < e 

? 

Set e = e’,  
PMij = c, 

ctr = ctr + 1 

Is 
c < n 

? 

Is 
j < p2 

? 

Set 
j=j+1 

Is 
i < p1 

? 

Set 
i=i+1 

Is 
ctr > 0 

? 

Set 
ctr=0 

STOP 

YES 

NO 

YES 

NO 

NO 

NO 

Are 
constraints 

satisfied 
? 

NO 

YES 

YES NO 

Figure 2. Flowchart of DBS Applied to Print Mask Design.

is displayed in Fig. 2. An initial random print mask PMi j is gener-
ated from a discrete uniform distribution on [1,n]. The prescribed
error measure, e, resulting from PMi j is then computed. The print
mask is then scanned in raster fashion. For each element in the
print mask, a loop is conducted through {1,2, . . . ,n}. At each in-
stance in the loop the element in the print mask is changed to the
current loop value and the resulting error measure e′ is computed
and compared to the previous error measure. If the error mea-
sure decreases and the constraints imposed onto the print mask
are satisfied, then the modified print mask PM′

i j and the new er-
ror measure e′ are kept. Otherwise, the print mask remains at its
previous value. An iteration is complete when the algorithm has
addressed every element in the print mask. The algorithm termi-
nates once an iteration results in no modification to the print mask
result from the previous iteration.

In reference to the originaly DBS [12], slight modifications
have been made to make the algorithm applicable to PM design.
The difference between the DBS as is and the DBS applied to PM
design is the inherent difference between the values that the ele-
ments in each application can take. Since a PM is a base n matrix,
all possible values for each element in the print mask must be con-
sidered, resulting in the additional c loop in the algorithm. Also,
Fig. 2 includes the satisfiying of constraints before accepting a
change. It should be noted that the constraints can be lumped into
the error measure. However, we have chosen to show them sepa-
rately. The next section discusses an application of this algorithm
for designing a PM with the objective of minimizing coalescence
and drop placement error.
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Figure 3. Neighborhood of Interest for Image Pixel qi,q2 .

An Example of Direct Binary Search for Print
Mask Design

The choice of error measure is application dependent. In
previous applications the goal was to keep all image errors [9–11]
or embedded signals [13] imperceptable to the human eye. The
human vision system has also been considered in previous print
mask designs [2]. However, this example focuses on designing a
PM via DBS with an error measure which considers drop coales-
cence and drop placement error.

Let the image, I be of size m1 ×m2 pixels. To address drop
coalescence and drop placement error, the neighborhood of image
pixel q1,q2 shown in Fig. 3 is considered. Typically, p1 < m1 and
p2 < m2. As a result, the PM is tiled up to match the the size of
the I. This tiled up matrix is referred to as the canvas [6]. For this
example, we take m1 = 2k− k

n and m2 = 2p2; where k is the total
number of nozzles in the print-head.

Let
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denote the number of times element (i, j) in the PM repeats itself
throughout the height of the canvas and

Q = {(q1,q2) : q1 = i, i+ p1, i+2p1, . . . ,repi;q2 = j, j+ p2}
(2)

be the set of all pixels in the canvas where element (i, j) of the
PM appears. Then we write the error measure for element (i, j)
to be

e =∑
Q

(

4

∑
w=1

f (q1,q2,w)

)

; (3)

where w represents the member of the neighborhood shown in
Fig. 3 and f is point and neighbor dependent error function. Let
γc be a weighting on the importance of drop coalescence, γdp be
a weighting on the importance of drop placement, εq1q2w be the
relative biased drop placement error between the nozzle responsi-
ble for printing image pixel (q1,q2) and the nozzle responsible for
printing neighbor pixel w, σx2

q1q2
and σy2

q1q2
be the variance of the

drop placement error associated with the nozzle that prints image
pixel (q1,q2) in the print-head scan and media advance directions,
respectively, and σx2

w and σy2
w be the variance of the drop place-

ment error associated with the nozzle that prints neighbor w in the
print-head scan and media advance directions, respectively.

For this example, we have

f (q1,q2,w) = γc · fc(q1,q2,w)+ γdp · fdp(q1,q2,w); (4)

where

fc(q1,q2,w) =

{

Tmin −
∣

∣Tq1q2 −Tw
∣

∣ , if
∣

∣Tq1q2 −Tw
∣

∣< Tmin

0, otherwise

(5)

is the point and neighbor dependent error function for coalescence
and

fdp(q1,q2,w) = εq1q2w+
√

σx2
q1q2

+σy2
q1q2

+σx2
w +σy2

w (6)

is the point and neighbor dependent error function for drop place-
ment. Tmin is the deposition time difference threshold between
image pixel (q1,q2) and neighbor w in order to avoid drop coa-
lescence, Tq1q2 is the deposition time of image pixel (q1,q2), and
Tw is the deposition time of neighbor w. The methods used in
this example to find Tmin, Tq1q2 , Tw, and the nozzle responsible for
printing each image pixel are the same methods discussed in [6].

To avoid the trivial situation where a pass is associated with
no nozzle firing, the following constraint is applied to this exam-
ple [6].

⋃

i, j

{PM(i, j)}= {1,2, . . . ,n}. (7)

Next we assume bidirectional printing, equivalent ink prop-
erties, substrate properties, image resolution, and the same 12-
nozzle print-head as in [6]. In addition, we assume the print-head
scan speed to be 15in/s, 2in margins, a minimum acceptable prob-
ability of coalescence to be 10%, n = 4, and p1 = p2 = 4. To
maintain comparable magnitude scaling between Eq.’s 5 and 6,
the weightings were set to γc = 1 and γdp = 0.001. It should be
noted that these weightings depend on the units and magnitudes
of the cost functions. In this case, the units for Eq. 5 are in sec-
onds and the values maintained are on the order of 1s; the units
for Eq. 6 are in μm and the values maintained are on the order of
10μm. Additionally, εq1q2w = 0.

To achieve a sense of performance with this example, the
proposed DBS algorithm was run 100 times. The values for the
number of iterations required before convergence and minimal e
were recorded for each trial. The PM associated with the smallest
vaue for the minimal e is

PMmin =

⎛

⎜

⎜

⎝

4 2 4 1
1 4 1 4
4 1 3 1
1 4 1 4

⎞

⎟

⎟

⎠

.

It should be noted that only two of the elements in PMmin are nei-
ther 1 nor 4. By default one of these should be 2 and the other
should be 3 so that the constraint in Eq. 7 is satisfied. The reason
for a large populations of 4’s and 1’s in PMmin is due to the co-
alescence objective (no more than 10% coalescence). Using the
argument of adjacency constraints [3], to satisfy the coalescence
objective, each element in the PMmin must be at least two passes
from its horizontal and vertical neighbors. It should also be noted
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from the application of the exhaustive search [6] that PMmin is
in the set of admissible PMs with a minimum acceptable proba-
bility of coalescence of 72%, nothing lower. This is because of
the high print-head scan speed (15in/s) compared to the ratio of
the size of the image to the time scale of evaporation of water
on glass (0.02in/s) and the presence of 2 in PMmin(1,2) and 3 in
PMmin(3,3), resulting in deposition time differences less than the
threshold values for 72% occurrence of coalescence, violating the
coalescence constraint. However, the constraint is violated only
for these two elements.

The statistics for the recorded values are given in Table 1.
In this example, the DBS has a fast rate of convergence, requiring
only 3 to 5 iterations to converge to a local optimum, as seen with
previous applications [9,11]. However, the resulting PM will only
minimize e locally, not globally, which requires multiple runs of
the algorithm to confidently (> 95% confidence) obtain a globally
minimizing PM. This explains the large standard deviation (33%
of the mean) of the minimum e, especially in this case when the
smallest minimized e is more than two standard deviations from
the mean. On the other hand, the DBS is its much lower number
of operations when compared to the previous exhaustive search
(smaller by a factor of np1·p2−1) [6]. For this example, the ex-
haustive search requires O(6.9×1010) operations to complete, 8
orders of magnitude higher than running 100 trials of the DBS (10
orders of magnitude higher than 1 trial of the DBS (O(64)). Be-
cause of its drastic reduction in computation resources compared
to the exhaustive search, future efforts will be made on improving
the number of operations required to confidently obtain a globally
minimizing PM.

Summary of DBS Statistics for 100 Trials

Statistic Minimum e Iterations

Minimum Value 3.94 3
Maximum Value 16.68 5

Mean Value 10.62 3.11
Standard Deviation 3.42 0.35

Conclusion
In this work, the DBS has been adopted and applied to print

mask design. In addition, an example print mask design with an
objective to minimize drop coalescence and drop placement error
was conducted via DBS. The number of operations for 100 trials
of the DBS was 8 orders of magnitude smaller than the previously
proposed exhaustive search. Future efforts are needed to improve
the number of operations required to confidently (> 95% confi-
dence) obtain a globally minimizing PM.
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