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Abstract 
The binary ink developer in the HP-Indigo press selectively 

applies condensed ElectroInk® onto the photoreceptor to form the 

image.  The ink is transported by the elastomeric developer roller, 

which needs to be sufficiently conductive to allow its surface 

voltage remains essentially constant as it moves through the 

various interfaces encountered along its periphery.  But it cannot 

be so conductive as to discharge the ink before it is developed.  So 

it would be useful to know the roller resistance and its uniformity.  

In this work we describe an impedance technique to map the 

developer roller resistance across its surface.  The roller only 

needs to be a single conductive dielectric layer.  Hence its relevant 

impedance spectrum can be simple and uniquely determined by the 

corresponding capacitance and resistance obtained at a single 

well-chosen frequency.  Although the actual material can be more 

complex, we show that scanning the roller surface at one 

frequency can provide very useful information.  The process is 

reasonably rapid, allowing multiple rollers to be readily 

compared to see if process/materials variations produce changes. 

Introduction 
HP Indigo presses use a liquid electrophotographic (LEP) 

process to produce excellent print quality (PQ) [1,2].  One key 

element is the binary ink developer (BID) unit [3,4] which 

converts the low viscosity ElectroInk® [5,6] entering the BID to a 

much more usable paste-like layer on the developer roller (DR).  

This densified ink is pressed against the photoreceptor (PR) and 

sticks instantaneously to the latent image, allowing the process 

speed to reach 2.15 m/s in the new HP Indigo 7500 and W7200 

Series III presses.  The DR in the BID and the PR ground serve as 

the two electrodes between which the ink paste chooses allegiance 

depending on the local E-field [7].  The resultant density on the PR 

depends on factors such as the ink characteristics in the contact 

zone [8]. 

The DR is the hub of the BID as shown in Fig. 1.  The 

process starts in the electrode region where it accumulates ink 

solids.  The resultant layer is compacted by the squeegee and 

presented to the PR.  Any remaining material is removed by the 

cleaning roller for a clean start of the next cycle.  Each step uses an 

electric field to retain or move the ink particles.  Hence the DR 

resistivity must be reasonably low and consistent enough to avoid 

introducing a significant, variable voltage drop.  On the other 

hand, it cannot be so low as to discharge the adjacent ink layer on 

its way to the PR.  For the 40 mm Indigo DR this dual requirement 

can be met by properly adjusting the conductivity of the 4 mm 

outer elastomeric layer, which also helps ensure mechanical 

compliance.  Since polymers are inherently insulative or modestly 

conducting, the task is to add the right type and amount of 

conductive agents uniformly. 

Figure 1. HP Indigo BID unit. 

Conductivity is typically introduced using carbon black or 

ion-based agents.  Although zeroing in on the right concentration 

seems straightforward, getting good uniformity is not because it 

depends on the exact processing technique and conditions.  For 

example, mixing may be incomplete and additives may move 

during material curing.  So having a way to assess the roller 

resistivity magnitude and uniformity is desirable.  In this work we 

show that these characteristics can be determined using an 

impedance technique similar to that used previously for studying 

Indigo-style blankets [9] and inks [8].  We find that the resistance 

profile across the roller surface differs significantly among rollers 

depending on the process conditions and materials used.  Hence 

the technique can be used to provide a quick assessment of any 

contemplated process/material change. 

Experimental 
The impedance measurements were done using two different 

tools.  One is the Solartron 1280B Electrochemical Test Unit [8,9].  

This instrument returns Z as (|Z|, θ) or (Z’, Z”) and can operate 

from 1 mHz to 20 kHz.  For the DR the results were obtained 

between 1 Hz and 10 kHz, which covers the critical frequencies for 

the DR and more.  In one earlier work [9] we used a pair of 25.4 

mm by 40.6 mm electrodes inside a housing placed against the 

blanket to apply the signal.  Here we use a similar arrangement 

with one same sized electrode that has been reshaped to conform to 

the roller surface (Fig. 2, bottom).  This has 11.2 cm2 area, about 
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8% over the flat electrode.  The other electrode was replaced with 

a recessed block connected a wire and clip that is attached to the 

DR shaft to supply the return current path. 

 

 

Figure 2. Electrode housing for mapping using 10 mm wide electrode (top) and 

DR-conforming electrode for impedance spectra (bottom). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Apparatus for holding DR during impedance mapping.  The electrode 

housing sits on top of the DR and against the structure that keeps it aligned.  

The vertical rod supplies repeatable pressure to the housing. 

For surface mapping a BK Precision Model 885 LCR/ESR 

meter was used.  It provides Z in the same two forms at four 

frequency choices, 100 Hz, 120 Hz, 1 kHz and 10 kHz.  In 

principle a single-layer leaky dielectric can be characterized by 

(|Z|, θ) at any frequency.  But the roller material deviates a bit from 

ideal, and hence mapping results are not identical for results 

obtained at f a decade apart.  Nevertheless, choosing just one is 

generally close enough if the task is to see whether the roller is 

uniform or not.   

 

A photo of the mapping apparatus is shown in Fig. 3.  The 

DR is place on a stand with V notches to align the shaft.  A wheel 

with engraved angle markings is attached to one end of the shaft.  

The roller can be turned on the stand and its orientation 

determined relative to a stationary pin.  A stage is used to align the 

electrode housing and to hold it down using a vertical rod.  A scale 

pasted on the stand gives the horizontal position of the stage, 

which can be slid parallel to the DR shaft.  The electrode 

arrangement is the same as that used for the Solartron but the 

electrode replaced with a flat one 10 mm wide (Fig. 2, top) with a 

2.5 mm contact width.  Since the polymer is 4 mm thick, there is 

some current spread to the DR shaft.  Simulation was done to 

determine the correction factor to obtain the right resistivity.  Note 

that the area needed to obtain stable measurements is much smaller 

for the BK instrument.      

Results and Discussion 
Within the 30 mm electrode region the DR picks up ink 

solids, which need countercharges to hold them in place.  The DR 

interactions at the other interfaces occur much faster, in the ms 

range.  These set the required frequency response for the DR, ~0.1 

to 1 kHz.  A single-layer dielectric with the right conductivity 

should be sufficient, at least with respect to electrical 

characteristics.  For our tests we look at the impedance spectrum 

over an expanded range, 1 Hz to 10 kHz, to see a bigger picture. 

Figure 4. Impedance spectra of three rollers, which all appear to be essentially 

resistive in the relevant frequency range. 

Consider the spectra of three DR-sized rollers (Fig. 4), which 

use different polymers, conductive agents, and/or processing 

conditions.  Each has a nearly constant |Z| with a resistivity in the 

range useful for a DR.  From this measurement alone, all three 

should operate adequately although their behaviors are not all 

entirely ideal (cf., Fig.4 in [9]).  That would require θ to approach 

0 below some f.  Types A and B are at least some distance from 0 

and turns up below 10 Hz.  The increase is similar to that seen with 

Indigo-style blankets [9], characteristic of a surface layer.  But here 

the corresponding f is significantly lower, indicative of a much 

thinner and likely irrelevant layer.   
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Figure 5. Impedance profile of Type A roller.  The local resistivity is clearly not 

uniform with maximum/ minimum over 50. 

Figure 6. Impedance profile of Type B roller.  The local resistivity is not uniform 

but the nature is clearly different than that of Type A. 

  
While the impedance spectra suggest that each roller may 

work in the BID, more data would be helpful.  Figure 5 shows the 

impedance mapping of a Type A roller at 1 kHz.  The average 

resistivity was found to be 9.2 MΩ-cm, in the same ballpark as that 

measured with the Solartron shown in Fig. 4.  But the variation is 

extremely large, over a factor of 50.  One side of the roller is much 

more resistive than the other, and that side is graded from one end 

to the other.  Contrast this with the mapping obtained on a Type B 

roller shown in Fig. 6.  The ratio of highest and lowest values is 

almost as large, around 27.  But most of the high resistivity region 

is confined to one end of the roller.  The average resistivity from 

the mapping is 0.59 MΩ-cm, very close to that in Fig. 4. 

Making rollers non-uniform is probably quite easy if the 

formulation process is not well thought out and care not taken to 

make sure it is done correctly.  But it is also possible to produce 

ones that have little variations under the right circumstances with 

the right materials.  Figure 7 shows the impedance mapping of a 

Type C roller.  At first glance there appears to be some sizable 

difference between two sides half a circumference apart.  But in 

fact the vertical scale here is quite small, ranging from 0.9 to 1.1.  

The ratio between the extremes is just 1.13 compared to at least 27 

for the previous two rollers, over 20 times smaller.    

 

 

Figure 7. Impedance profile of Type C roller.  The vertical scale here goes from 

0.9 to 1.1 compared to 0 to 3.5 and 0 to 7 for Figs. 4 and 5, respectively.  The 

resistivity variation is just a small fraction of that in Types A and B. 

Process changes can alter the resistivity profile of a particular 

formulation.  Figure 8 shows the mapping for a Type D roller 

made with a certain process.  Here the roller is non-uniform along 

its circumference.  On the resistive side, it is more so one end 

compared to the other.  Its general profile bear some resemblance 

to that of the Type A roller (Fig. 5), suggesting that perhaps a 

similar technique or process was used.  Figure 9 shows the Type D 

roller made using a different method than that for the roller in Fig. 

8.  This impedance profile looks nothing like the other, remaining 

relatively flat over most of the surface.  The resistivity only 

increases on the ends and is highest on the opposite end compared 

to the ones in Figs. 5, 6 and 8.  Along the circumference the roller 

is relatively uniform except at the far end where there was an 

increase to a spike.  This result suggests that tracking the 

impedance profile with the process can provide clues as to how 

better uniformity can be achieved. 

Our mapping process is relatively quick and painless.  At each 

designated position along its length, the roller can be turned step-

by-step until the required angles have all been checked.  The 

housing is lifted and put back at each step.  After placing the rod 

on the housing, the reading can be recorded within a few seconds.  

For a laboratory environment, this process is perfectly adequate.  If 

automation is desired, the stand design would be more complex.  

Some means of indexing the radial position would be needed along 

with a screw drive or equivalent to move the stage.  Some way to 

move the housing up and down would also be required.  None of 
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these is difficult.  It is a question of whether enough measurements 

would be done to justify the time needed for the design. 

 

 

Figure 8. Impedance profile of Type D roller.  The roller was fabricated using 

one process. 

 

 

Figure 9. Impedance profile of Type D roller.  The roller was fabricated using 

an alternative process aimed on improving the resistivity uniformity compared 

to the other version. 

  

Conclusions 
In this work we discussed the role of the BID DR in the 

Indigo LEP process and its electrical response requirements.  For 

this a single-layer conducting polymer is sufficient so long its 

resistivity is in the proper range and relatively uniform.  Some 

rollers fabricated in the form of a DR were examined with respect 

to these two parameters using an impedance mapping technique 

introduced here.  Although the values obtained may not uniquely 

determine the roller electrical characteristics, they are close enough 

to give the big picture.  Indeed, vast differences in the impedance 

profile can be seen among rollers made with different material sets 

and in different ways.  This mapping need not be confined to the 

DR.  It is a tool that any roller formulator can use to improve the 

electrical uniformity of that product. 
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