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Abstract 
Inkjet printing is a nascent technology that developed during 

the last decades from only printing text and graphics into an 
important scientific research tool for R&D, where printers are 
used as a highly reproducible non-contact patterning tool. In 
contrast to lithography, inkjet printing is an additive technique 
that requires only small amounts of functional materials and, 
therefore, has a high materials efficiency. In particular, inkjet 
printing of metal nanoparticle dispersion has been used more and 
more during the last few years, in order to produce conductive 
features for plastic electronic applications. 

Here, we present our recent results in the sintering of inkjet 
printed metal nanoparticles on polymer foils. In order to sinter the 
particles at speeds that are compatible with roll-to-roll speeds, we 
have used a combination of sintering methods. Conductivity values 
between 40 and 60% were obtained in a few seconds to minutes by 
using either photonic or plasma pre-sintering combined with 
microwave flash sintering. 
 

Introduction 
Inkjet printing of conductive precursor materials – usually 

metallic nanoparticles or metal organic complexes – has been used 
as a relatively fast technique that might enable roll-2-roll (R2R) 
production.[1-3] However, the sintering step that is necessary to 
render the precursor compounds conductive typically requires 
>30 minutes and/or higher temperatures (>250 °C). In particular, 
the long sintering time is not scalable to R2R production lines and 
the high sintering temperatures are not compatible with paper or 
common polymer foils that have a relatively low glass transition 
temperature (Tg). Both the temperature and the time required for 
sintering clearly need to be reduced and this has, therefore, been 
the research for many scientists over the last few years.[1-5] 

Inkjet printing of metal precursor inks has been used for many 
applications, such as interconnections for a circuitry on a printed 
circuit board,[6] disposable displays and radio frequency 
identification (RFID) tags,[7] organic thin-film transistors,[8] and 
electrochromic devices.[9] Despite the many successes in the 
inkjet printing of metal precursor inks as a rapid fabrication tool 
for plastic electronic applications, some challenges still remain. 

Firstly, the processing temperature needs to be below the Tg 
of the substrate materials and the decomposition temperature of 
protecting materials, such as barriers or insulating materials. 
Secondly, the current resolution of inkjet printing is in the order of 
micrometers and, therefore, cannot be compared with the 

resolution of lithographic techniques, including soft-, photo- and 
nano-imprint lithography, that have a nanometer resolution.[10] 
The current industrial state of the art feature size of 32 nm has 
been achieved as a consequence of an enormous financial and 
intellectual effort, over the last 60 years. While this technology is 
needed for state of the art high frequency circuits, the appeal of 
inkjet printing comes into play when the focus is placed on 
properties other than speed or feature density. The great advantage 
of inkjet printing is that it is a ‘mask-less’ process; it can quickly 
switch from one design to another without the need for a new set 
of expensive masks, which enables a much more flexible 
processing flow.[11] It is also not limited to a few rigid substrates, 
like silicon or gallium arsenide. Therefore, a trade-off exists 
between resolution and flexibility. 

Finally, conductivity values need to reach a certain 
application dependant value. Typically, the obtained conductivity 
after the sintering step is only a fraction of the bulk metal 
conductivity. The conversion of the precursor ink into bulk 
material is affected by the processing temperatures, which are well 
below the melting temperature of bulk metal. This can be 
compensated for by printing multiple layers,[12] which comes at 
the cost of more needed material and time. Therefore, another 
trade-off appears between the processing conditions and the 
feature’s conductivity. 

Here, we summarize alternative and selective sintering 
methods that can sinter as-printed metal nanoparticles below the 
Tg of common polymer foils. Furthermore, we present the 
sintering of metal nanoparticles at speeds that are compatible with 
R2R production. By a combination of plasma or photonic pre-
sintering, followed by a microwave flash sintering step, 
conductivities up to 60% were revealed in short times 
 

Sintering approached for nanoparticle inks 
After a metal-containing precursor ink has been deposited 

onto a substrate, an additional processing step is required to render 
the as-printed patterns conductive: a process called sintering. In 
the case of a heating a nanoparticle ink, the nanoparticles lose their 
organic shell and start showing conductance by direct physical 
contact. Conductivity only arises when metallic contact between 
the particles is present and a continuous percolating network is 
formed throughout the printed feature. An organic layer between 
the silver particles as thin as a few nanometers is sufficient to 
prevent electrons moving from one particle to another.[13] When 
metal nanoparticles are created, larger particles will form through 
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Ostwald ripening;[14] a process whereby the surface energy is 
reduced due to the particles' large surface-to-volume ratio. 

The conversion of non-conductive precursor inks has been 
reported mostly by simply applying heat. However, typical 
sintering temperatures are above 200 °C,[13] which is not suitable 
for common polymer substrates that have a relatively low glass 
transition temperature (Tg), like polyethylene naphthalene (PEN) 
and polyethylene.[3] In fact, only the expensive high-performance 
polymers, like polyimide and polytetrafluoroethylene can be used 
at high temperatures, which represent a drawback for 
implementation in large area production and are not favorable in 
terms of costs. 

A first selective sintering technique, which was developed by 
Reinhold et al., is to expose the printed features to a low pressure 
argon plasma.[15] This process decomposes the organic moieties 
around the nanoparticles within the printed feature from top to 
bottom, which can be followed by a growing skin layer in time. 
After a sufficient amount of sintering time, the as-printed features 
are converted into bulk material. The authors confirmed the skin 
layer formation by applying adhesive tape to the partially sintered 
printed structures, which removes the conductive top layer, while 
leaving the designated unsintered part of the material behind. 
Removing the upper layer revealed a characteristic bluish 
appearance of nanoparticles, which did not show conductivity. The 
crust that was transferred to the adhesive tape, however, was 
conductive and showed similar resistance compared to the 
complete track before. Subsequent plasma processing of the 
sample yielded again conductivity (see Figure 1). 
 

 
Figure 1. Skin layer removal and microstructures after repetitive sintering. Reprinted 
from ref. [15]. 
 

A second example of selective sintering is by using 
microwave radiation.[16] Typically, highly conductive materials, 
e.g. metals, have a penetration depth of 1 to 2 µm at a microwave 
frequency of 2.45 GHz. It is believed that the conductive particle 
interaction with microwave radiation, i.e. inductive coupling, is 
mainly based on Maxwell-Wagner polarisation, which results from 
the accumulation of charge at the materials interfaces, electric 
conduction, and eddy currents.[17] In contrast to the relatively 
strong microwave absorption by the conductive particles, the 
polarisation of dipoles in thermoplastic polymers below Tg is 
limited, which makes the polymer foil’s skin depth almost infinite, 
hence transparent, to microwave radiation. Exposing metallic 
nanoparticles to microwaves does not only reveal a sintering 
process taking place, but also the sintering time is hereby 
decreased by a factor of 20, while conductivity values are similar 
when using thermal sintering. By the application of conductive 
antenna structures around features that exhibit a small 
conductance, the exposure times could be reduced to only a single 
second, as described by Perelaer et al., recently.[18] In fact, the 
antenna structures do not require a physical contact with the 

unsintered features, which makes recycling of the antennae 
possible. This process can then be implemented into roll-to-toll 
(R2R) production. After sintering the features revealed a 
conductivity of up to 34% when compared to the bulk silver value. 

As a final example, photonic sintering is listed here, which 
uses a high intensity white light beam to sinter metal precursor 
inks (see Figure 2). This relatively new technique is, for example, 
commercialized by NovaCentrix.[19] The tool produces very short 
pulses of white light with a maximum of 100 kW cm-2 to deliver 
the energy to the target material. By careful control of the duty 
cycle of the lamps, the energy delivery to the inks can be stopped 
at the right moment, i.e. just before enough energy is delivered to 
convert the ink into its conductive form and to prevent substrate 
damage. Conductivity values of 25 to 30% of bulk metal were 
obtained with translational speeds of up to 100 meters per minute. 

 

 
Figure 2. Roll-to-roll photonic sintering tool from NovaCentrix. Reprinted from 
PulseForge™ brochure, http://www.novacentrix.com. 

 
Other techniques that are reported in the open literature and 

have been used for sintering include exposure to UV radiation,[20] 
electric sintering,[21] and LASER sintering.[22] 

Recently, Magdassi et al. discovered that silver nanoparticles 
behave as soft particles when they come into contact with 
oppositely charged polyelectrolytes and undergo a spontaneous 
coalescence process at room temperature.[23] Triggered by these 
findings, the authors have inkjet printed a solution containing the 
cationic polymer poly(diallyldimethylammoniumchloride) onto an 
as-printed film of silver nanoparticles that are stabilized by 
poly(acrylic acid), which lead to the sintering of silver 
nanoparticles and the formation of conductive films without 
further heating. The obtained conductivity was approximately 20% 
compared to bulk silver. 
 

Combined alternative sintering methods 
In order to obtain sintering speeds that are compatible with 

R2R production, a combination of two alternative sintering 
techniques was used here. Thermal sintering could not be used, 
since the polymer substrates have a Tg lower than the required 
sintering temperature of the metal nanoparticles – the latter one 
being more than 150 °C. 
Figure 3 shows a schematic representation of a sample with four 
silver electrode/antennae structures, which increase the absorption 
of the microwaves,[18] and on top a single silver line. 
 

 
Figure 3. Schematic representation of the printed template with four silver 
electrodes/antennae and a single silver line inkjet printed on top of the antennae. The 
total length of the line is 1.6 cm. 
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After inkjet printing a single line over the antenna structures, a pre-
sintering step was performed by using photonic sintering. Figure 4 
depicts a scanning electron microscopy (SEM) image of inkjet 
printed silver nanoparticles (Suntronic U5603) after photonic pre-
sintering. It can be seen that the nanoparticles have merged into 
larger agglomerates due to sintering and that, subsequently, a 
continuous network for electrons has been created, hence becomes 
conductive. At this point the conductivity was approximately 20% 
of bulk silver. 
 

500 nm

 
Figure 4. Scanning electron microscopy (SEM) image of inkjet printed silver 
nanoparticles on PEN substrate after photonic flash pre-sintering. 
 
In order to further sintering, hence increase the conductivity, 
microwave flash sintering was used subsequently. Figure 5 shows 
an SEM image of the same track after microwave flash sintering. 
Due to the microwave exposure, the nanoparticles have sintered 
further and the conductivity increased to approximately 40%. 
 

500 nm

 
Figure 5. Scaning microscopy image of inkjet printed silver nanoparticles after 
photonic flash pre-sintering, followed by microwave flash sintering. 
 
Furthermore, we have used a tailored silver nanoparticle ink with a 
similar combined sintering approach. The customized silver ink 
was made in such a way that the organic stabilizers around the 
nanoparticles provide sufficient stability to inkjet print the ink, but 
the organics are also weakly enough bound to the particles that 
they can be removed at a low temperature. By using plasma pre-
sintering followed by microwave flash sintering, conductive silver 
features were obtained with a conductivity up to 60% that of bulk 
silver. 
 
 
 

Conclusions 
In conclusion, we presented a method to sinter as-printed 

silver nanoaparticles in times that are compatible with roll-to-roll 
production speeds and common polymer substrates that have a 
relatively low Tg. By combining photonic pre-sintering with 
microwave flash sintering, conductivities of 40% of bulk silver 
were obtained in only a few seconds. When using a tailored silver 
nanoparticle ink and the combination of plasma and microwave 
flash sintering, conductivity values up to 60% were obtained in a 
few minutes. 
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