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Abstract
Digital printing has begun to play an ever-increasing role in

the commercial printing industry. The usual approach to tackle all

imaging artifacts is to optimize each subsystem and hope the fi-

nal assembled system will satisfy the product requirement. While

the subsystem optimization is necessary, it might result in over-

stringent requirements for each subsystem, but still not address

the problems from the interaction among subsystems. An efficient

optimization process to compensating the residual image artifacts

on an assembled printing press will address this deficiency to fur-

ther reduce system manufacturing constraints and extend the life

expectancy of imaging components. The Intelligent Calibration

System is an adaptive digital press optimization process to ad-

dress one-dimensional macro nonuniformity and color-to-color

misregistration using its digital writing module and a fast image-

capturing device.

Introduction
As digital printing technologies, such as electrophotography,

drop-on-demand inkjet, and continuous inkjet, gradually broaden

their service in the commercial printing industry, the demand for

their capabilities to deliver high-quality prints with lower cost has

persistently increased. A digital press is composed of many sub-

systems, and each subsystem can potentially contribute to imag-

ing artifacts. The usual approach to tackle any artifact on a digital

press is to optimize each subsystem and hope the final assembled

system will satisfy the product requirement. While the subsystem

optimization is necessary to improve the overall system perfor-

mance in image quality, it might result in a very stringent require-

ment for each subsystem because of the effect of accumulating

error in the final system. Furthermore, the subsystem optimiza-

tion process does not address problems arising from interactions

among subsystems. As a result, an efficient optimization process

with the capability to compensate residual image artifacts on an

assembled printing press will provide several advantages to assist

the current digital press development process and benefit press

customers, such as reduced system manufacturing constraints, ex-

tended life expectancy of imaging components, reduced running

cost, and shorter artifact-recovery time [1, 2, 3].

The Intelligent Calibration System is an adaptive digital

press optimization process that addresses the artifacts of one-

dimensional macro nonuniformity and color-to-color misregistra-

tion using its digital writing module and a fast image-capturing

device. One-dimensional macro nonuniformity, often denoted as

streaking or banding depending on its periodicity characteristics,

has long plagued digital printing systems, and can be caused by

any subsystem, by the interaction among subsystems and printed

substrates, and by image content. Because of its unpredictable na-

ture, an active signal cancellation-like process, denoted as the cal-

ibration process, might be better equipped to handle this artifact

[1, 3, 4]. In general, the calibration process can either adopt an

actual signal-generation device, such as a Laser or LED writer, or

perform pixel correction on the intended virtual document. These

proposed technologies have one similarity in their iterative nature

with a feedback loop control scheme. That is, the difference be-

tween the intended level and the actual measured level, denoted as

δy0 in a chosen color space, is estimated, and then used to drive

the calibration process to reduce the difference. Gradually, |δyi|,
i = 1 · · ·k, should decrease with properly chosen feedback control

parameters. These techniques, denoted as recursive compensation

processes, assume little or no prior knowledge regarding the un-

derlying printing process. While they can incrementally achieve

the objective to reduce streaking and banding, it is more desir-

able and efficient to devise the deterministic compensation pro-

cess that can precisely determine modification parameters based

on a single acquired signal and knowledge of the adopted imag-

ing process. The Intelligent Calibration System is a determinis-

tic compensation process using the LED digital writing module

as the compensating signal generator. While the electrophoto-

graphic printing process is assumed in this paper, it is possible to

extend this deterministic compensation process to other printing

processes.

The actual one dimensional nonuniformity signal so(x,v)
needs to be predicted at every spatial location x and pixel level

v for the success of the signal cancellation algorithm. Hence, the

capability to precisely locate any streak signal in the spatial do-

main can be readily extended to estimating and calibrating error

in registration among different colors. The Intelligent Calibration

System will first estimate the distance between two registration

marks with different colors and their deviation from the theoret-

ical positions. An over-determined linear system can be formu-

lated by adopting different choices of color pairs and physical lo-

cations, and the corresponding least-square solution represents an

estimation of the color registration error.

Intelligent Calibration System
The Intelligent Calibration System adopts the LED writer to

generate the inverse signal

κ(x,v) = ψ
−1(µo(x,v)− s̄o(x,v)), (1)

where s̄o(x,v) is the estimate of the unknown one-dimensional

nonuniformity signal so(x,v) based on a single scanned target

and µo(x,v) is the aimed color at location x and pixel level v.

ψ(κ(x,v)) represents the mapping function from the exposure

level, κ(x,v), of the LED writer to the perceived color on the

printed substrate [5, 6, 7, 8]. In the scenario where so(x,v) = 0,

κo(x,v) = ψ−1(µo(x,v)) is the a-priori LED uniformity correc-
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tion. Denote the measured nonuniformity signal as y(x,v), and

assume that

y(x,v) = φ(so(x,v))+e(x,v), (2)

where φ(·) represents the mapping function from printing and im-

age capturing processes and e(x,v) is the associated random noise.

φ(·) can be affected by, printing halftone patterns, toner physical

properties, the transfer function of the chosen image capturing

device, etc. s̄o(x,v) is the solution of the following minimization

problem subject to certain smoothness and/or sparsity constraints,

Γ:

s̄o(x,v) = min
s

‖φ
−1(y(x,v))− s(x,v)‖, ∀ s(x,v) ∈ Γ. (3)

For example, Γ could be the set of piecewise smooth functionals.

Equation (2) becomes a traditional noise removal problem if φ(·)
becomes an identify function.

Figure 1. The nonuniformity calibration in the Intelligent Calibration System.

Uniformity Calibration
There exists two different ways to reproduce images on a

substrate, i.e., halftone and continuous tone, and the color mix-

ing theories to explain how light interacts with the substrate and

colorant before reaching our eyes are slightly different [9]. The

Yule-Nielsen model was proposed to explain the color mixing be-

havior in the halftone printing processing:

A
(n)
h

=
1−10−D/n

1−10−Ds/n
, (4)

where Ah is the halftone dot area, Ds is the reflection density of

the solid patch of the selected color, D is the measured reflecting

density of the halftone color patch, and n is determined by the

actual printing process. In the extreme case of n → ∞,

Ãh =
D

Ds
. (5)

Since the mapping from A
(n1)
h

to A
(n2)
h

is bijective, without loss

of generality, we can focus the following analysis using Ãh. As a

result, we can deduce that the nonuniformity in reflection density

on a halftone print sample, ∆D, is proportional to the variation

in the dot area, ∆Ãh. Let r be the radius of a halftone dot, and

Ãh = πr2. One unknown disturbance, ϑi, in the printing system

drives the printing system away from its aimed reflection density

at location xi. We can deduce that ϑi results in small variation δ ri

in the radius, ri, of the halftone dot at xi. That is:

ri → ri +δ ri (6)

where δ ri is a function of ri. Based on the Taylor expansion, we

can decompose δ ri as:

δ ri =
∞

∑
k=0

αikrk
i = αi0 +αi1ri +ρ(ri) ≈ αi0 +αi1ri, (7)

where {αik}
∞
k=0 is determined by ϑi and ρ(ri) is assumed to

be negligible since δ ri is usually very small. We can denote

{αi0,αi1} as streak coefficients at the location xi. There exists

three possible scenarios based on the sign of αi0:

αi0 > 0 : This indicates detectable color tint at supposedly blank

substrate location xi, i.e., high background artifact.

αi0 < 0 : This nonuniformity will change its perceived polarity,

for example, the streak might change from a light streak to

a dark streak at location xi.

αi0 = 0 : This nonuniformity is consistent in its perceived polar-

ity.

In this paper, we will focus on the last case, and we can derive

∆Di = Ds∆Ãh = Ds2πriδ ri = 2Dsαi1πr2
i = 2Dsαi1Ãhi. (8)

Equation (8) suggests that the magnitude of the streak signal ∆Di

at location xi is linearly proportional to Ãhi. Let~s j and~α be the es-

timated reflection density variation and the corresponding streak

coefficients, [α11,α21, · · · ,αk1]
T where k is the number of LEDs,

across the full range at averaged colorant coverage Ã
j
h
, where

j = 1 · · ·J. Estimating ~α from single realization of ~s j and Ã
j
h

is

noisy and unreliable. This problem can be greatly alleviated by

correlating estimated reflection variation at multiple density lev-

els as follows:

S = [~s1 ~s2 · · · ~sJ ] = 2Ds[Ã
1
h Ã2

h · · · ÃJ
h]~α. (9)

The above equation indicates that the rank of S is 1, and the

remaining J − 1 subspace is the null space spanned by printing

and/or scanning noise. As a result, ~α = |ν|~η , where ~η is the

first singular vector of S. Each component ~s j in S is obtained by

solving Equation (3). We can further simplify the problem by as-

suming φ(·) is an identity function if the selected halftone screen

is capable of reproducing fine details and the Modulation Transfer

Function of the chosen image capturing device is close to an all-

pass filter. A stationary wavelet transform with soft thresholding

is adopted to derive the optimal estimation of~s j at each coverage

Ã
j
h
. Hence, the one-dimensional nonuniformity is governed by:

S = 2Ds[Ã
1
h Ã2

h · · · ÃJ
h]|ν|~η. (10)

It is necessary to establish the relationship between ~α and ~κ ,

ψ−1(·), as described in Equation (1), which depends on the cho-

sen printing process. We will focus on the electrophotographic

process in this paper. Assuming the thickness of the colorant layer
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is fixed before multiple layers of colorant being formed on the

substrate, we can deduce that Ãhi is proportional to M/A, which

represents the colorant mass per unit area. M/A can subsequently

be controlled by the LED writer. The theoretical analysis on the

electrophotographic process using conductive magnetic brush de-

velopment can be approximated in first order by the following

equation [10]:

Ãh ∝
M

A
=

CtνV p

Q/M

ρc

ρt

8ε0

rt
= βDV (11)

where Ct is the toner concentration, ν is the speed ratio factor be-

tween roller and photoreceptor, V is the applied voltage, p repre-

sents carrier surface packing, Q/M is the charge-to-mass ratio, ρc

and ρt are the densities of carrier and toner respectively, ε0 is the

permittivity of free space, and rt stands for the toner radius. ϕ(κ)
represents the known mapping function from the exposure of the

LED writer, κ , to the applied voltage, V , on the photoreceptor. As

a result, we can derive the following relationship:

∆Ãh

Ãh

=
2δ r

r
= 2~α ∝

δV

V
=

δϕ(κ)

ϕ(κo)

⇒ δϕ(κ) ∝ ~αϕ(κo) (12)

Equation (12) summarizes the theoretical basis to deterministi-

cally correct one-dimensional nonuniformity by modifying the

digital writing module, and the calibration algorithm is illustrated

in Figure 1.

Color Registration Calibration

Figure 2. The pairwise color fiducial marks.

The most basic approach to precise measure registration er-

ror among different colors is to measure the position of each fidu-

cial mark under high magnification and free of substrate deforma-

tion, and the distance between two fiducial marks, dc12, satisfies

dc12 = pc2 − pc1, pc2 > pc1, (13)

where pc1 and pc2 are the fiducial positions of color1 and color2.

The difficulty arises when there is constraint on the magnifica-

tion level and unpredictable substrate deformation. Both prob-

lems need to be addressed in the Intelligent Calibration System.

The designed target to measure registration is shown in Figure 2.

The periodic positional marks are used to calibrate deformation

of the digitally captured target, where the distance between two

neighboring positional marks is known. The relative positions of

two color fiducial marks are measured relative to the two clos-

est positional marks. This is the first step to reduce measurement

error. Second, the same pair of color fiducial marks, for example

cyan and magenta, will occur multiple times on the same captured

target, and the average distance between them is adopted to fur-

ther reduce the measurement error. In the case of N-color printing,

there are N(N −1) two-color combinations. Hence, we can form

the same number of linear equations according Equation (13) with

the unknown being the location of each color channel. This is an

over-determined linear system, H~p = ~d, where H ∈ ZN(N−1)×N,

~p ∈ RN×1, and ~d ∈ RN(N−1)×1. Hence,

~p = (HT H)−1HT
~d. (14)

Experimental Result
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Figure 3. The measured nonuniformity signals (dashed line) and their

corresponding model fit (solid line).

Figure 1 summarizes the nonuniformity calibration algo-

rithm in the Intelligent Calibration System. After the printed tar-

get is captured by a document scanner, the positional marks along

the top and bottom of the target are identified to serve as the spa-

tial references. The profile extraction algorithm uses these spatial

references to estimate the signal strength of nonuniformity across

the LED pixel locations at each Ãh level. The resulting nonunifor-

mity signals after the multilevel streak extraction module, which

adopts the stationary wavelet transform with soft-thresholding

technique to remove measurement noise, are shown in Figure 3.

Six levels of Ãh are included in the designed target, and the rel-

ative strength of the singular values of the nonuniformity signal

matrix, S ∈ R8064×6, shown in Figure 4, indicates that the rank of

S can be treated being one as suggested in Equation (10). ν can

be estimated from the slope of the linear fit as shown in Figure 4,

and the corresponding LED power modification percentage based

on this scanned target is shown in Figure 5.
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Figure 4. Rank estimation of S and the proposed linear model fit for nonuni-

formity signals at different Ãh.

The Intelligent Calibration System uses a document scanner

as the image capturing device to scan images while transporting
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substrate using rollers. Therefore, the spatial scanning accuracy

can be insufficient to satisfy the high-precision requirement of the

color registration calibration. Figure 6 shows the measured sig-

nal of the positional marks and color fiducial marks. The actual

distance between two positional marks should be 192 pixels, but

the measured distance between them ranges from 188 to 194 pix-

els with overall average distance being less than 192. Hence, the

procedure suggested in previous sections is necessary to achieve

needed accuracy for precise color registration control. Figure 7

demonstrates the results of before and after color registration cal-

ibration.
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Conclusion
A deterministic compensation process, the Intelligent Cali-

bration System, calibratew color nonuniformity and registration

artifacts. This system has been deployed in the field and shown

its effectiveness to address the targeted artifacts. Furthermore,

since this system actively compensates for color nonuniformity, it

reduces the frequency of unnecessary or immature imaging com-

ponent replacement, which, in turn, results in higher uptime for

the printing press and cost savings for the customers.

Figure 7. Color fiducial marks before and after registration calibration.
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