Digital Fabrication of “Smart” Structures and Mechanisms -
Creative Applications in Art and Design

Peter Walters " and David McGoran '

' Centre for Fine Print Research, University of the West of England, Bristol, UK

2 Bristol Robotics Laboratory, Bristol, UK

Abstract

This paper describes the design and fabrication of novel
“soft” structures and mechanisms employing “smart” shape-
changing materials. These structures and mechanisms incorporate
shape memory alloy (SMA) micro-actuators, enabling them to
exhibit lifelike movement when stimulated by the application of
electric current. Fabricated by 3D printing in a soft elastomer
material, their design includes internal channels into which the
SMA actuators are easily mounted. Other design features allow
Slexibility of movement and facilitate cooling of the SMA actuators.

A tentacle-like active structure is described, which
incorporates an antagonistic pair of SMA micro-actuators,
allowing it to exhibit two-way motion. Results are presented for
the speed and range of motion of the tentacle-like structure.

The paper goes on to describe a creative arts application for
smart active structures and mechanisms which exploits the
technologies under investigation: an interactive puppet which
exhibits lifelike, expressive movement. This research in digital
fabrication and smart materials has implications for the fields of
interactive and robotic art and design, soft robotics and physical
computing.

Introduction

Smart materials are materials which change their physical
properties in response to external stimuli. In this paper we report
results from an interdisciplinary research project investigating how
smart materials technologies, together with 3D printing, might be
creatively exploited within art and design applications.

We describe the design, prototyping and testing of a tentacle-
like active structure which is fabricated by 3D printing in a soft
elastomer material. The tentacle structure is actuated by shape-
memory alloy “artificial muscles”. We go on describe a purpose-
built flex sensor based interface which allows the tentacle-like
structure to be controlled like a puppet.

We begin this paper by briefly reviewing relevant research by
others working in the field of smart materials and soft robotic
technologies.

Smart materials and soft robotics

The term “Soft robotics” refers to robotic devices that are
fabricated from soft, flexible, materials, instead of the hard plastics
and metals traditionally used in robotics [2, 3, 4, 5, 8]. Researchers
working in this field have identified that a robot made from soft
materials may mimic more closely the functions of a living
organism such as an octopus or jellyfish. In addition, for robotic
devices which are to function in close proximity to the human
body, soft materials may be more desirable since they may be
more comfortable than hard metals or plastics and also less likely
to cause injury. Research groups active in this area include, for
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example, the Biomimetic Devices Laboratory, Tufts University,
USA, and the Soft Robotics Group, Bristol Robotics Laboratory,
UK.

Gilbertson [1] describes how a finger- or tentacle-like active
structure can be fabricated from silicone rubber catheter tubing.
Actuation is provided by shape-memory alloy (SMA) “Muscle
Wire” threaded through three channels running along the length of
the tubing. When electric current is passed through the Muscle
Wire it contracts (typically by 4-5 %) and this causes the tubular
structure to bend. The structure can bend in three different
directions, depending on which Muscle Wire is powered.
Gilbertson describes the actuated structure as exhibiting smooth,
life-like movements.

Trimmer [2], Kate ef al.[3] and Lin et al. [4] report recent
research into the development of biomimetic soft-bodied robots, at
Tufts University, USA. They describe Caterpillar-like crawling [2,
3] and rolling [4] robots which have been fabricated by molding
silicone rubber in 3D printed molds. These soft-bodied robots
incorporate SMA helical coil actuators which are either bonded to
the inside of the body cavity of the robot [2, 3] or mounted in
lumina molded into the structure of the robot’s body [4]. When
heated electrically, the SMA coil actuators employed in [2, 3, 4]
provide significantly greater contraction when compared to the
Muscle Wire actuators described previously, thus giving greater
movement. In [2, 3] the crawling action of a caterpillar-like
“Softbot” is achieved by SMA coil actuators which sequentially
compress the robot’s body segments. These then re-extend, either
passively, through the recoil action of the elastic body wall, or
actively, by actuating adjacent SMA coils. In 2008, the “Softbot”
was exhibited at the Museum of Modern Art in New York, in the
exhibition entitled “Design and the Elastic Mind.” In [4] a
caterpillar-like robot performs an impressive “ballistic rolling”
action. This is achieved by rapidly contracting of a pair of SMA
coils mounted within longitudinal lumina in the lower (ventral)
portion of the robot’s body. Wedge-shaped notches are removed
from the lower portion of the robot’s body to aid flexing when the
SMA coils contract. The SMA coils are segmented half way along
their length, so that anterior and posterior sections of the robot can
be actuated independently, when rolling and when crawling. The
authors of [4] suggest that the design of the rolling robot could be
modified to give it dorsal-ventral symmetry - it could then perform
a ballistic roll in both dorsal and ventral directions, and actively
recover its initial state.

In [5] Rossiter et al. describe electroactive polymer actuator
technologies and fabrication techniques for applications in soft
robotics. Electroactive polymer (EAP) actuators include dielectric
elastomer actuators, which expand in area and contract in
thickness with the application of a high voltage [6] and ionic
polymer metal composites, which bend when stimulated by a
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relatively low voltage [7]. Rossiter et al. describe a number of soft
robots and actuators based upon ionic polymer metal composites
including anguilliform swimming robots and artificial cilia [5]. In
[8] Rossiter et al. describe the fabrication by 3D printing of a
dielectric elastomer actuator for soft robotics. The structure of a
double membrane actuator was fabricated by photopolymer jetting
(Objet Geometries Limited, Israel) in rigid and soft elastomeric
materials. Compliant electrodes were applied to the structure by
spraying or painting by hand.

Rossiter et el. point to the future possibility of 3D printing
complete soft robots and soft-smart devices [8]. The paradigm of
Printable Robots, in which complete robots, including sensors,
actuators, control systems and power supply may be fabricated by
multi-material inkjet printing technologies, was proposed by
Daigle [9].

We will now describe the design, fabrication and testing of
the tentacle-like active structure.

Digital fabrication of a tentacle-like active
structure

The design of the tentacle-like active structure is illustrated in
Figure 1. The tentacle design comprises an elongate structure
which is fabricated in a soft elastomer material. The active length
of the structure is 55 mm. Like the robot caterpillar described in
[4], the tentacle structure incorporates longitudinal lumina
accommodating SMA coil actuators and cables, and notches are
removed from the sides of the structure to aid flexibility. However,
whilst in [4] the robot caterpillar is fabricated by casting silicone
elastomer materials in 3D printed plastic molds, the tentacle-like
structure is fabricated by 3D printing directly in a soft elastomer
material (Fullcure 930 material, Objet Geometries Limited, Israel
[10]). This eliminates the molding stage. The ability to print
structures and mechanisms directly in a soft, rubber-like material
means that features which might otherwise be difficult to mold
may more easily be incorporated into a design. Direct printing of
soft structures also speeds up design iterations since modifications
can be made to the design of the structure itself without also
needing to also re-design tooling (i.e. molds). Once the soft
structure has been 3D printed, the support resin is carefully
removed from the internal lumina. If required, the structure can
then be coloured by dyeing with ordinary fabric dye [11].

The SMA coil actuators (Biometal Micro-helix BMF 150,
Toki Corporation, Japan) are mounted within lumina running
down the left and right side of the tentacle. These operate
antagonistically as follows: When electric current passes through
the left hand NiTi coil it contracts, causing the tentacle to bend to
the left. Similarly, when current passes through the right hand coil
it contracts which causes the tentacle to bend to the right. The
range of movement of the tentacle-like active structure is
illustrated in Figure 2.
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Figure 1. Tentacle-like active structure.

Figure 2. Range of movement of tentacle-like active structure.

In order to investigate the speed of movement of the tentacle,
we recorded the time taken for it to bend approximately 180
degrees, as shown in Figure 4. Results of this investigation are
presented in the table in figure 4 which includes values for
actuation voltage and time.
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Actuation Time
Voltage (V) (S)
2.5 5.3
3 34
3.5 2.6
4 2.1
4.5 1.5

Figure 4. Approximate time for the tentacle to bend through 180 degrees.

Design concept: tentacle-like smart puppet
Having designed and fabricated a working tentacle-like active
structure, we went on to develop a flex sensor based analogous
interface, in order that the tentacle might be controlled like a
puppet. The interface takes the form of a flexible “wand” which
incorporates a pair of resistive flex sensors (Spectra Symbol, Salt
Lake City, USA) which are mounted in opposing directions, as
shown in Figure 5. The external structure of the control wand is
fabricated by 3D printing in the same Objet Fullcure 930 material
as the tentacle. When the control wand is bent to the left, the
resistance of one of the flex sensors increases, and when bent to
the right, the resistance of the other flex sensor increases.
Movement of the tentacle-like “smart puppet” is controlled by the
wand, via custom electronics and software. This comprises: an
analog signal conditioning stage, Arduino microcontroller
prototyping board, dual MOSFET driver circuit and custom open-
loop control software. In operation, bending the wand to the left
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causes the tentacle to move the left, and bending the wand to the
right causes the tentacle to move to the right

3D printed structure \‘x

777777

777777

M\Z x Flex sensors

Interface electronics
and software

\ Tentacle movement

Figure 5. Design concept: tentacle-like “Smart Puppet” with flex sensor based
analogous interface.

Conclusions

In this paper we have described the design, prototyping and
testing of a tentacle-like active structure and an analogous “smart
puppet” control interface.

SMA-actuated soft robots developed previously by others
have been fabricated by casting silicone elastomer materials in 3D
printed moulds [2, 3, 4]. In the present paper, we have
demonstrated that structures for SMA-actuated smart devices can
be 3D printed directly in a soft elastomer material. This eliminates
the molding stage, making it quicker and easier to fabricate soft
structures and mechanisms which, after the removal of support
resin, can be made smart simply by inserting SMA actuators and
flex sensors.

Design can be a highly iterative process. The ability to 3D
print directly in an elastomer material means that any
modifications which may be needed to “fine-tune” a design only
need to be made to the structures or mechanisms themselves —
redesign of molds is no-longer necessary. Significantly, the
research presented in this paper points towards the future
possibility of Printable Robots, as predicted by Daigle [9], and to
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the printing of soft robots and soft-smart devices proposed by
Rossiter et al. [8].

Potential applications within the visual arts and design are
wide ranging, including interactive artworks, “smart puppets” for
animation, animatronics and performance, and product designs that
automatically can change shape to alter their appearance or to
enable different functions.

Figure 6.Working prototype “Smart Puppet” with flex sensor based analogous
control interface.
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