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Abstract 
Due to their excellent water and fade resistance properties 

and their low environmental impact, aqueous pigment dispersions 

are of growing importance in emerging high throughput aqueous 

ink jet markets.   However, the physical durability (abrasion 

resistance) of pigment-based inks is often poor.  In this paper we 

describe how dispersing pigments with polymeric dispersants 

enables significant advantages  in abrasion resistance, whilst also 

delivering stable dispersions across the wide range of ink 

formulations required to print reliably at high speed, and rapid 

coagulation on a wide range of substrates.   We show that to 

achieve stability it is essential to irreversibly anchor the 

dispersant to the pigment surface, and then provide the 

appropriate balance of electrostatic and steric inter-particle 

interaction in order to prevent particle aggregation in the ink. We 

show how these challenges can be met with a new type of pigment 

dispersion based on Reactive Dispersant technology.    

Ink-Jet Ink Design 
 

An ink-jet ink for high throughput applications has to deliver 

performance in three basic areas: 

 

1. Reliable jetting from the nozzle: To generate reproducible ink 

droplets without satellites nor a significant  ligament or tail – 

particularly important for single pass printing. 

2. Controlled ink behavior on the substrate: To minimize 

penetration/bleed & migration processes while the ink is still 

mobile. 

3. Satisfactory final image properties on the substrate. 

 

In high throughput printing applications, the requirement to 

print uninterruptedly at high speed places particular emphasis on 

tailoring the ink chemistry to deliver high reliability. One key 

aspect of ink performance that underpins high reliability is open 

time – the period of time that ink can reside (without jetting) in an 

uncapped nozzle before jet failure occurs. Broadly speaking, the 

longer the open time, the more suited the ink class is to high 

operability single pass ink jet applications.   

 

Aqueous inks provide a particular challenge in achieving high 

open-times due to the volatility of the continuous phase and the 

various property changes that can occur during the evaporation 

process.  Some of the changes that may occur are: 

 

1. Viscosity increase. 

2. Surface tension change. 

3. Phase change (eg. from polymeric components or in the 

cosolvent mixture). 

4. Precipitation (of pigment or polymer components). 

5. Aggregation of pigments. 

 

In designing an aqueous ink for improved open-time, several 

strategies can (and are) employed.  The first is to increase the 

humectancy of the ink such that the time to reach the critical 

viscosity is longer than the target open-time.  The second approach 

is to decrease the amounts of the most volatile solvent (typically 

water) and to increase the content of lower volatility solvents (ie. 

to increase the organic solvent content in the ink).   

 

In order to deliver the ink behavior on the substrate and the 

required final image properties, it is essential to select the 

appropriate colorant technology. Due to their superior 

lightfastness, bleed control, optical density and wetfastness on the 

substrate, pigments are often the choice of colorant for the ink 

development chemist.  However, the appropriate choice of pigment 

dispersion technology is key to the success of the formulator in 

meeting the ink design challenges.  In the following sections, we 

consider the choices of pigment technology and their strengths and 

weaknesses in delivering the three basic performance 

requirements. 

 

Targets for Pigment Dispersing Technologies 

In developing a pigment dispersion technology, it is, of 

course, a fundamental requirement that the technology provides 

successful stabilization in the ink over its lifetime and during the 

conditions of use.   This is only a minimum requirement.   The 

pigment dispersion technology must also provide a controllable 

coagulation rate (and so penetration and optical density) and a 

robust film on the substrate.   

 

Figure 1:  Demonstration of the wet-rub resistance of a print (on plain-paper) 

produced with a polymer (Reactive Dispersant technology) stabilized 

dispersion and a non-polymer stabilized dispersion (functionalized pigment). 

586 ©2011 Society for Imaging Science and Technology



 

 

The benefits of polymer stabilization are clear from Figure 1 

which illustrates the web-rub resistance of prints.  The polymeric 

dispersant provides vastly superior rub resistance (in fact, in this 

case, any visible transfer arises due to paper damage rather than 

failure of the ink film).  So, it is best to choose polymeric 

dispersants as these provide the necessary particle binding within 

the ink film.  This allows the formulator to develop inks with good 

on-substrate performance.   However, as will be shown below, the 

production of dispersions with polymeric dispersants requires 

some attention to their design in order to develop the requisite 

stability in the ink. 

Stabilization of Pigment Dispersions 
 

The effectiveness of a dispersion technology for stabilizing 

pigments in high organic content inks depends on achieving two 

main requirements: 

 

1.  Anchoring of the dispersing species. 
 

It is essential that the stabilizing chains or groups are 

irreversibly anchored to the surface of the pigment dispersion in 

order that the pigment is not destabilized by desorption of the 

dispersant.   This is illustrated in Figure 1. 

 

 

 

 

 

 
Figure 1:  Failure of dispersant anchoring in a dispersion.   

2.  Stabilization via interparticle repulsion 
 

In order to overcome the strong, short-range Van der Waals 

attraction between colloidal particles, it is necessary to have a 

mechanism of interparticle repulsion.  In aqueous systems, two 

main classes of stabilization are possible: 

 

1. Electrostatic – anchoring of charged groups onto the particle 

surface 

2. Steric – anchoring of polymer chains onto the surface  

 

In polymer stabilized dispersions, a combination of both 

mechanisms is often used (electrosteric stabilization).  The DLVO 

theory of electrostatic repulsion is illustrated in Figure 2.  This 

theory accounts for the combined effects of inter-particle attraction 

through Van Der Waals interactions and repulsion through 

electrostatic interactions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  DLVO theory of electrostatic repulsion illustrating the net 

interparticle repulsion as a function of inter-particle separation (nm).   

Achievement of both anchoring and inter-particle repulsion is 

particularly challenging in applications demanding high open-time 

inks due to their high initial organic solvent content and since the 

evaporation of water from the inkjet nozzle will result in a further 

increase in the hydrophobicity and organic content of the ink 

within the printhead.  This is illustrated in the schematic diagram 

in Figure 3.  

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

Figure 3:  Illustration of the compositional changes occurring as an ink 

evaporates.   The shaded area shows the stable region for the pigment 

dispersion in the ink. 

During evaporation, the ink becomes progressively more 

hydrophobic and higher in organic content (assuming lower 

volatile organic solvents are used) thus weakening the adsorption 

of the dispersant on the pigment surface.  At some point, the 

pigment dispersion may become unstable due to the desorption of 

the dispersant or, due to the decreasing dielectric constant of the 

vehicle, reduction in the interparticle repulsion arising from the 

surface charge. 
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The larger the stability window, the greater the formulation 

flexibility of the dispersions and the more suitable for use in high 

open-time aqueous inks.  Of course, it is highly undesirable to 

formulate inks in close proximity to the boundary between the 

stable and unstable regions.  From the point of view of dispersion 

selection it is advisable to choose a dispersion technology which 

maximized the stable region in order to have the maximum 

opportunity for optimizing the ink for print-head operability as 

well as for on-substrate performance.   

Dispersion Technologies 
 

There are several methods to stabilize pigment dispersions for 

use in ink-jet inks.  We will illustrate the stability of each of the 

main dispersion technologies in turn in the following sections.  

The assessment of stability was performed by creating ternary 

mixtures of 1,6-hexanediol, glycerol and water with the dispersion 

at a typical concentration used in inks.  The stability was assessed 

by optical microscopy after 1 week at 25oC.  The dispersion was 

deemed to be unstable if there were any visible signs of 

aggregation. 

 

1. Surfactant Stabilized Dispersions. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Phase diagram for a low molecular weight dispersant stabilized 

dispersion.  The shaded region represents the stable region.  The dots show 

the compositions measured (due to the water content in the pigment 

dispersion, not all of the compositional space could be accessed). 

The stability of an anionic low-molecular weight surfactant 

stabilized dispersion is shown in Figure 4.  Increasing the hexane-

diol concentration in the mixture or decreasing the water content 

has a dramatic effect on the stability of the dispersion.  In this case, 

although the surface charge is high, the dispersant anchoring is 

poor. 

2.  Polymer Stabilized Dispersions 
 

The stability of an optimized anionic high-molecular weight 

polymeric dispersant stabilized dispersion is shown in Figure 5.  

The dispersion is stabilized to a much higher degree than apparent 

for the surfactant system, although there is failure evident at high 

1,6-hexanediol concentrations.  In this case, the surface charge is 

high and although the dispersant anchoring is much improved 

there are still signs of anchoring failure in the most hexanediol rich 

ink vehicles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  Phase diagram for a dispersion stabilized with an optimised high 

molecular weight polymeric dispersant.  The shaded region represents the 

stable region.   

3.  Functionalized Dispersions 
 

 

The stability of a functionalized pigment (ex Cabot 

Corporation) in ternary mixtures of water, glycerol and 1,6-

hexane-diol is shown in Figure 6.  In this case, the dispersion has 

insufficient surface charge or steric stabilisation to be stable across 

all regions of the ternary phase diagram despite the covalent 

attachment of the stabilizing groups. 

 

 

 

 

 

 

 

 

Figure 6:  Phase diagram for a functionalized pigment with covalently attached 

charged groups.  The shaded region represents the stable region.   
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4.  Reactive Dispersant Stabilized Dispersions 
 

Reactive Dispersant technology addresses many of the issues 

of stabilization of colloidal dispersions.   This has several 

advantages over the previous dispersion technologies in that it 

allows the benefits of polymer based stabilization technology, in 

particular its excellent durability, without the drawback of poor 

dispersant anchoring.  The principle is illustrated in Figure 7. 

 

 

 

 

 

 

Figure 7:  A schematic illustration of Reactive Dispersant Technology.   

In order to eliminate dispersant desorption, the adsorbed 

polymeric dispersant is cross-linked on the pigment surface.  This 

approach is considerably more versatile and pigment surface 

independent than the alternative approach of bonding of the 

dispersant via covalent reaction to the surface.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8:  Phase diagram for a cross-linked polymeric dispersant (Reactive 

Dispersant).  The shaded region represents the stable region.   

The stability of a Reactive Dispersant based dispersion is 

shown in Figure 8.  The dispersion is stable across the entire ink 

tested region illustrating that it delivers firm anchoring as well as 

providing a high inter-particle repulsion.   The use of reactive 

dispersant technology allows more flexibility in the polymer 

design as many dispersants are optimized on the basis of the need 

for better anchoring, rather than, for example, on-substrate 

performance. 

 

 

 

 

 

 

 

 

Figure 9:  The maximum tolerable amount of diethylene glycol mono butylether 

before there is observable aggregation of a polymeric dispersant based 

pigment dispersion in which the dispersant is cross-linked to varying extents 

(arbitrary units).  The shaded area illustrates the stable region. 

To illustrate the benefits of the cross-linking process in more 

challenging inks, Figure 9 shows the resistance to diethylene 

glycol mono butylether.  As the cross-linking level is increased, the 

tolerance to the water-miscible but relatively hydrophobic 

cosolvent is enhanced.  At high cross-linking levels, the dispersant 

desorption is prevented.  In order to achieve stability at even 

higher solvent levels, it is possible, without compromising the 

dispersant anchoring, to adjust the dispersant charge or steric 

stabilization to ensure compatibility in the target ink vehicle. 

Conclusions 
 

The design of high throughput inkjet inks with suitable on-

substrate performance can be achieved through the use of Reactive 

Dispersant technology.  Such technology allows the enhanced 

physical durability achievable with polymer-stabilized dispersions 

but without the poor stability performance that can limit their use.  

Cross-linking of the dispersant around the pigment surface 

eliminates loss of anchoring which is the predominant failure mode 

in conventional polymer based dispersions.  Solving this problem, 

means that cross-linked polymer based dispersions can be 

optimized through tailoring of the dispersant structure for on-

substrate performance and reliable jetting performance rather than 

for  dispersion stability. 
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