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Abstract 
3D printing of complex structures by selective deposition is 

currently dominated by inkjet technologies. Dry toner systems, 

despite their high productivity and maturity in 2D digital printing, 

have only been used indirectly for Additive Manufacture of objects 

above the micro scale. Although electrophotography (EP) 

promises increased deposition efficiency and a means of utilizing 

materials not amenable to liquid ink formulations; this potential 

cannot be achieved using conventional electrostatic transfer 

methods.  

This paper reviews the problems associated with conventional 

transfer in multilayer printing (including height limitation and 

defect exaggeration) and demonstrates alternative transfer 

principles which promise to unlock the potential of Additive 

Manufacturing by EP. 

Introduction  
Upscaling electrophotography (EP) to be a viable means of 

printing three-dimensional parts has been the elusive goal of many 

researchers throughout the twenty-five year history of additive 

manufacturing (AM).[1-6] Despite some success at the micro 

scale, AM systems benefiting from the speed, resolution and 

reliability of electrophotography for directly printing larger parts 

remains only a proposition to date.[7, 8] 

Reinventing electrophotography in the context of additive 

manufacturing raises a host of challenges. Perhaps the most 

demanding requirements for implementing electrophotography as a 

fabrication means above the micro scale include: a range of 

functional toner materials, effective transfer methods which are not 

height limited, and test methodologies for evaluation of multilayer 

printing. Owing to the attention which has already been given to 

development of functional toners this paper focuses on the latter 

two needs.[9-13] 

Previous attempts to overcome the limitations of conventional 

electrostatic transfer in multilayer printing are reviewed. A series 

of conventional and alternative transfer methods are considered. 

For consistency all transfer illustrations show negatively charged 

toner (even if positively charged toner was used). A test 

methodology for comparing transfer effectiveness based on build 

stack height and surface roughness is proposed. The findings 

highlight major factors contributing to surface defect exaggeration 

and stack height limitations. 

Conventional Transfer Method Development 
The transfer step initially used by Chester Carlson and Otto 

Kornei to develop EP, did not employ electrostatics at all, but 

relied on the toner in the developed image sticking to wax 

paper.[14] A wide variety of adhesives on paper were trialed for an 

entire year before it occurred to Schaffert to use electrostatics to 

transfer the toner from the photoconductor plate to the paper.[15] 

Drawing the toner off using a field generated through the paper 

(Figure 1) proved to be a far more effective transfer method, 

eliminated the need for sticky paper and has proven so reliable that 

it has become a universal convention.[14] 

 

 
Figure 1 – Conventional transfer method implementations 

Historical Attempts to Upscale EP  
The progression from single layer prints to multilayer prints 

was made with the move from monochrome to color printers. This 

section will now consider attempts to print from tens to hundreds 

of layers with the intention of achieving specific functionality or 

form.  

 

 
Figure 2 – Comparison of the stack height from single to 15 layer prints 

Demonstrations such as the one pictured in Figure 2 have 

doubtless been repeated dozens of times as an early feasibility 

check when considering the potential of electrophotography for 

functional multilayer printing. The cross-sectional optical 

microscopy samples shown were printed using a Ricoh Aficio 

CL7000 (Ricoh Company Limited, Tokyo, Japan) on 80 gram 

paper. The print on the right was made by feeding the same sheet 

of paper through the printer 15 times, which accumulated a fused 

toner thickness of approximately 100 µm. Attempts to re-circulate 

the paper more than 15 times repeatedly resulted in paper jams. 

The engineering constraints of typical paper feed mechanisms in 

modern laser printers oblige researchers intending to print 

hundreds of layers to use an alternative substrate. This often takes 

the form of a rigid conductive platform as shown in Figure 1. 
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Surface Defects Problem in Multilayer Printing 
To those unskilled in the art, directly transferring one image 

upon another seems primarily an engineering issue – all that is 

required is to replace the paper feed mechanisms with a moving 

platform. Following that logic, the sample in Figure 3 was 

produced by using a CTG-1C17-600 printer (CTG PrintTEC, 

Germany) with a conventional polyester toner (Samsung Poly-JZ) 

to print a rectangular pattern (120x80mm) twenty times onto a 

rigid substrate. After each print, the height of the platform was 

adjusted to maintain a consistent nip contact area and pressure 

between the drum and the upper layer of the image stack. Although 

the first few prints resulted in a uniform transfer, by the 20th image 

extensive surface defects were evident.[16] 

 

 
Figure 3 – Surface defects arising during multilayer printing 

The surface quality degradation problem illustrated above is 

not an isolated occurrence. It has been described by researchers as 

“defects,” “irregularities,” “pitting,” “valleying,” and as having a 

surface which “corrugates” – the cause of the defects is often left 

unexplained, however it has been attributed to electrostatics and 

repeated surface re-melting.[4, 8, 17, 18] Due to the self-

propagating nature of the defects they halt the uniform growth of 

stack height and thus limit the use of EP in mainstream additive 

manufacturing applications.[17] Every research group, to the 

author’s knowledge, which has attempted to directly print image 

stacks using non-conductive toner to heights in excess of 1 mm has 

experienced some kind of surface defect. 

Self-Limiting Nature of Conventional Transfer 
Ashok V. Kumar et al. of the University of Florida have 

published prolifically about conventional transfer limitations and 

potential solutions.[18-24] Kumar and Dutta explain that when 

using nonconductive toner, conventional transfer is only useful for 

small parts because, “the electric field strength at the top layer 

decreases as the part height increases.”[4] 

 

 
Figure 4 – Self-insulating nature of multilayer printing 

Figure 4 illustrates the self-insulating nature of multilayer 

printing when using nonconductive toners. Since E=V/d 

maintaining a constant voltage (V) on the platform means that each 

layer printed increases the thickness (d) of insulation between the 

photoconductor and the transfer potential thereby diminishing the 

field strength (E) at the top layer. Therefore with each successive 

print, the thickness of the fresh toner layer deposited drops.[25] 

Eventually, there is no longer the critical field strength required at 

the top surface to attract any toner off of the photoconductor 

resulting in a “cessation of transfer.”[25] Thus, the early 

innovation by Schaffert to draw toner off of the photoconductor 

using a field through the paper substrate is an inherent limitation 

for 3D printing. 

Top Charging Transfer Method 
Attempting to circumvent this limitation, Kumar et al. 

installed a corona wire to charge the top surface of the printed 

image stack before each print as shown in Figure 5.[4, 18] By 

saturating the uppermost printed layer with ions it was intended 

that the electrostatic field induced between the fused toner and the 

photoconductor would be enough to transfer the toner onto the 

substrate. Theoretical calculations and empirical results by Fay and 

Dutta suggest that “…the part would continue to build indefinitely 

with adequate corona charging…” as long as the resulting build 

stack could be consistently discharged.[17, 25]  

 

 
Figure 5 – Top Charging transfer method steps as employed by Kumar et al. 

The top charging approach doubled the height of the printed 

image stack from 1 mm to 2 mm without noticeable surface 

degradation.[25] Although various trials showed image stack 

growth in excess of 2 mm, surface defects formed thereafter which 

were exaggerated with each successive print. 

In the final analysis, Kumar Das surmised that the surface 

defects were caused by the accumulation of residual [negative] 

toner charge which was not being fully dissipated prior to fusing 

each layer.[26] He acknowledged that the positive charge from the 

corona wire counteracted the residual toner charge in the early 

layers (when it was close to the platform), but its effectiveness 

diminished as the platform moved further away from the wire.[26] 

In essence this is a parallel problem to that of conventional 

transfer. The grounded platform was being shielded from the wire 

in proportion to the increasing toner thickness, therefore the 

surface deposited coronal charge was limited by the breakdown 

strength of the air (Gaussian Charge Limit) and could no longer 

supply enough positive charge to fully neutralize each layer.[26] 

With the fusing of each new layer of negatively charged toner, an 

platform 

direction 

120mm 
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increasingly negative volumetric charge is accumulated in the 

printed image stack. When the repulsive force exerted by the 

volumetric charge on the incoming fresh toner exceeds the 

attraction created by the positive surface charge, defects form. 

Based on his attempts to fully discharge printed layers Kumar Das 

observes that, “Complete discharge of the volume charge of a 

printed insulator layer is very difficult to attain.”[26] 

Even though the top charging transfer method pushed the 

maximum image stack height to 2 mm, mainstream additive 

manufacturing applications require increasing the image stack 

height by two or three orders of magnitude. The limitation of 

conventional transfer had been replaced by a new limiting 

phenomena induced by charge retention in the fused 

nonconductive toner layers. 

Transfer by Heat and Pressure 
In 1992 David K. Bynum was granted two United States 

patents for using electrophotography to print individual lamina or 

layers to be stacked and fused together.[1]  The method for his 

transfer step (Figure 6) was that each, “lamina is made tacky by the 

application of external heat, solvent vapor or induction heating.”[1, 

27] The fresh toner in the developed image would stick to the 

tacky layer beneath and after the transfer was complete a platen 

press applied enough pressure to fully densify the printed image 

stack.[1] In essence, Bynum’s transfer approach operated in the 

absence of electrostatics and harked back to the earliest adhesion 

transfer method employed by Carlson and Kornei.  

 

 
Figure 6 – Transfer method by Bynum based on making layers tacky 

There is no evidence that Bynum ever built a functional 

system or published results from further trials, however others 

have implemented the principles that he asserts.[28] Ed Grenda, 

Dennis Cormier et al., Klas Boivie et al. and Banerjee and 

Wimpenny have developed hardware and published experimental 

results using some combination of heat and pressure for transfer 

and fusing.[3, 5, 6, 28-30] 

Further to these is a heretofore unpublished sample, courtesy 

of David Wimpenny, built using Bynum's transfer approach. 

Figure 7 is the tallest (~10mm) directly deposited layer stack made 

from non-conductive tribocharged particles known to the author. 

Banerjee and Wimpenny commissioned CTG PrintTEC (Alsdorf, 

Germany) to produce the sample using an electromagnetic brush 

coating technique (EMB) which allowed great flexibility on the 

temperatures and pressures used. EMB coating develops a uniform 

layer of tribocharged particles onto a transfer roller that can be 

transferred off using only heat and pressure.[31, 32] 

 
Figure 7 – Multilayer sample produced using the Bynum transfer method 

Before depositing each layer of the sample in Figure 7 the 

previously deposited layers (and ceramic tile substrate) were 

preheated in an oven at 150°C for approximately five minutes. The 

tile was then mounted onto the platform of the EMB machine and 

another layer of epoxy-based powder was added with pressure that 

was substantially higher than would be used in an average office 

laser printer. A significant amount of manual manipulation of the 

sample was required to counteract the tendency for the edges of the 

sample to curl when heated in the oven. Despite the fact that 

producing a sample in this way does not allow for a like for like 

comparison with the samples produced on the systems mentioned 

in the second paragraph of this section (that use a photoconductor), 

this result provided preliminary proof of concept for Bynum's 

transfer approach. 

Based on the sample produced above Wimpenny et al. in 

collaboration with MTT Technologies Group Limited (Stone, UK) 

built a demonstration rig (Figure 8) which uses two CTG-1C17-

600 industrial laser printers (CTG PrintTEC, Germany) and 

infrared heaters (employing a Bynum transfer approach) as part of 

the European Union funded Custom-fit project.[9, 12, 33] 

 

 

 
Figure 8 – Selective Laser Printing (SLP) Development Rig 

Using this development rig a variety of samples were built 

including tensile test specimens which exhibited exceptional 

mechanical properties.[9] However, when attempting to replicate 

the stack height as demonstrated with the sample produced by 

EMB coating technology, surface quality issues began plaguing the 

polymeric parts when build stack heights exceeded 1 mm high.  
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Figure 9 – Tallest SLP sample from Custom-Fit project 

Figure 9 shows the tallest sample made on the SLP rig 

(courtesy of David Wimpenny), printed using surface coated 

Somos 201 material.[9, 30] The original intent was to create a 

benchmark of the maximum height the SLP rig was capable of at 

that time. The rectangular base was printed to a height of 

approximately 1.6 mm when the process was aborted due to 

waviness developing at the upper surface. After a one-hour recess 

the upper surface of the part was reheated to 130° C and printing of 

the text was attempted. Surface defect exaggeration was observed 

(which is why the text is not legible) as another ~0.7 mm of 

thickness was deposited non-uniformly onto the rectangular base 

and then the process was terminated. 

Attempts to raise the tackifying surface temperature to match 

transfer conditions used for the EMB feasibility sample resulted in 

back transfer to the organic photoconductor (OPC) which required 

replacement. 

Learning Outcomes from Heat and Pressure 
Transfer Methods 

The disappointing initial results from the SLP development 

rig provided strong motivation to analyze any differences from the 

EMB process. Assuming that Kumar Das is correct – that toner 

charge retention is problematic provides a useful framework for 

discussion.[26] First, the EMB process had more time to discharge 

between each deposition cycle. The semi-automated nature of the 

EMB process meant that roughly ten minutes passed between each 

deposition cycle while the SLP rig printed more than once each 

minute. Secondly, the EMB sample had more exposure to elevated 

temperatures, which enhances conductivity in pure epoxy (and 

most nonconductive materials), therefore promoting charge 

recombination.[34] The oven heating regime for the EMB 

produced part meant that it had at least a five minute dwell time at 

150°C, while the SLP sample was rapidly heated to 130° C by 

infrared heaters and then began cooling back toward room 

temperature. This meant that the SLP produced sample had a lower 

maximum temperature and that it was at elevated temperatures for 

far less time. Furthermore, epoxy has a higher dielectric constant 

(3.7-3.9) than Somos 201 (2.9) meaning that epoxy material may 

be less prone to retain charge.[35]  

Similar to the way photoconductors can develop a residual 

image when the latent image is not properly discharged it follows 

that tribocharged toner can retain a residual charge even after final 

transfer and fusing. The results from early trials on the SLP rig 

indicate a strong possibility that electrostatic forces still play a 

crucial role even when the transfer method does not directly 

employ electrostatics. 

Conclusions 
Electrophotography still represents an untapped technology 

for direct deposition additive manufacturing systems. 

As asserted by Cormier et al., “With regards to layered 

electro-photographic printing, perhaps the most significant 

technological challenge lies in inducing the printed image to leave 

the OPC drum and to be deposited onto the build platform.”[28] 

Although controlling the Bynum transfer method has proven 

impractical for producing high accuracy part features, the SLP 

development rig has been a versatile tool for understanding 

transfer principles, imitating past transfer configurations and 

exploring alternative transfer methods to enable additive 

manufacturing by EP. 

A review of published and heretofore unpublished work on 

transfer methods reveals several common challenges. In many 

cases transfer methods are self-insulating because the image stack 

height and transfer efficiency are inversely proportional. 

Furthermore, residual toner charge, considered of negligible 

importance in conventional 2D printing, is proving problematic 

when trapped volumetrically in the consolidated layers. The results 

herein corroborate with and strengthen the previous assertion that 

the repulsive force exerted by the trapped volumetric charge is the 

cause for defects in the printed layers. 

Future Work: Characterizing Multi-layer 
Transfer Phenomenon 

The dominant theme moving forward will be characterizing 

residual toner charge after transfer and fusing including the rate of 

accumulation and its effects in multilayer printing.  

The proposed methods of measuring its and its effects 

include: a) the surface potential of printed layers b) deposition 

thickness of each layer and c) the study of surface defect 

development using surface roughness and magnitude measures. 

With proper understanding of the charge retention phenomena 

appropriate methods to combat and eliminate the residual charge 

will be forthcoming. 
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