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Abstract 
A system designed to dispense small-molecule compounds 

dissolved in Dimethyl Sulfoxide (DMSO) into ANSI-standard 
wellplates has been developed by Hewlett Packard (HP). This 
system, based on HP’s Scalable Printing Technology (SPT), 
includes a disposable TIJ (thermal inkjet) dispensehead cassette 
designed specifically for the jetting of DMSO. Each cassette uses 
open 7µL reservoirs that allow a researcher to load fluid directly 
into the dispenseheads.  The system also includes an instrument 
that drives the dispenseheads and moves wellplates below the fixed 
cassette. The system finally includes software designed to specify 
the amount of fluid dispensed into each well, rendering 
complicated experiments to be simple to both design and execute. 

Picoliter-dispense technology is particularly suited for the 
creation of direct compound titrations in well plates commonly 
used for dose-response experiments. Advantages over traditional 
serial dilution techniques include a reduction of carry over and 
accumulated  error, an improvement in precision, and a reduction 
in compound usage.  Additionally, the HP system enables a 
simpler workflow and makes finely-spaced dosages practical. 

This paper describes key features of the HP system and 
performance data from pharmaceutical beta sites. It also describes 
the advantages of a TIJ-based compound-dispensing system 
relative to existing pipette-based or PIJ (piezo inkjet)-based 
systems. Finally, it describes some of the advantages of using a 
non-contact Digital Dispenser in this application. 

Introduction 
Serial dilution is routinely used in pharmaceutical research to 

create varying concentrations of compounds for dose-response 
analyses, for secondary screening, and for various absorption, 
metabolism, toxicity, and compound-compound interaction 
studies. The comparatively large minimum dispense volumes of 
existing technologies such as microliter-scale pipetting require a 
slow and expensive workflow including multiple serial dilution 
steps to span the concentration range of interest [1]. 

The solution developed by the Specialty Printing Systems 
division of Hewlett Packard, relies on the ability of SPT to reliably 
and rapidly dispense discrete picoliter volumes to create titrations 
without requiring time-consuming serial dilution steps. SPT 
directly titrates a solution by dispensing single drops to achieve 
low concentrations and hundreds or thousands of drops to reach 
high concentrations. These direct dilutions achieve an 
independently generated dose for each well without the typical 
constraints of serial dilution. This digital process easily enables 
randomized doses, finely spaced doses and dose combinations. 
These features are impractical with analog processes.  
 

 
Figure 1: Digital dispensing methodology 

Description of System 
TIJ dispenseheads have been optimized for jetting DMSO, the 

standard industry solvent, from an inexpensive, disposable cassette 
using a benchtop instrument. Each cassette contains eight 
dispenseheads arrayed at 9mm spacing to match standard multi-
channel pipettes.  Each dispensehead is topped by a tapered 
“filling cup” that provides a reservoir for up to 7 μL of fluid. 
These reservoirs can be filled with as little as 2 μL using a 
standard pipette and have a dead volume of about 15% of the fill 
volume, or less than ~1 μL. 

 

 
Figure 2: Loading T8 cassette reservoir using standard pipette 
 

HP’s SPT platform provides the foundation for this cost-
effective titration solution. Each dispensehead is 1.5 mm x 2.3 mm 
in size, has 22 nozzles, and has a thru-slot that provides a fluidic 
path for the DMSO to travel from the reservoir on the top of the 
cassette to the dispensehead nozzles on the bottom of the cassette. 
The small size of the silicon means that a new dispensehead can 
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economically be used for each compound, thus eliminating issues 
of carryover, rinsing, and clogging. The dispensehead operates at 8 
kHz per nozzle, utilizing two nozzle sizes that dispense either 20 
pL or 14 pL drops with DMSO. 

 
Figure 3: The HP D300 Digital Dispenser 
 

The instrument consists of a pocket to hold a dispensehead 
cassette, an x-y-z stage that moves a single 96-well or 384-well 
plate below the cassette, and an automated mechanism that 
provides electrical contact between the instrument and the eight 
dispenseheads on the cassette. The instrument also contains an 
ionizing bar to dissipate electrical charge buildup on the plastic 
wellplates prior to dispensing drops from the dispensehead. This 
prevents deflection of the picoliter-scale drops from static charge. 

 

 
Figure 4: D300 Graphical User Interface 
 

A graphical user interface (GUI) allows the scientist to define 
the dispense volumes/patterns for an entire plate of titrations 
before the dispense operation begins. Because the software enables 
the scientist to enter the assay volume, the stock compound 
concentration, and the DMSO limit for an assay, the scientist can 
simply define the concentration endpoints of a titration, the 
number or wells, the number of replicates, and the titration spacing 
(linear/log) and the system calculates the required dispense 
volumes to use in each well. This eliminates errors associated with 
converting dilution ratios and volumes to concentrations when 

serial diluting by hand and eliminates the complication of 
programming pipetting sequences when serial diluting using a 
robot. 

The system automatically determines what combination of 
large and small nozzles to use to optimize speed and minimize 
error. Once the dispense operation begins, the GUI prompts the 
user when and where to load compounds. After the dispense 
operation is complete, the system generates a report file of 
compounds, dispense volumes, and concentrations in both tabular 
and plate-layout formats. These report files can be matched up 
with plate reader output to generate response curves. 

Why TIJ 
Thermal Inkjet technology works by using the force 

generated by gas bubble expansion to drive fluid through a small 
nozzle.  The gas bubble is created by liquid-phase to vapor-phase 
conversion at the surface of a thin film resistor fabricated on 
silicon.  A common misconception is that this thermal mechanism 
precludes the use of TIJ in applications that dispense temperature-
sensitive materials [2]. 

 

 
Figure 5: TIJ Drive bubble 
 

The time scale of the heating event on the resistor surface is 
on the order of 1-3 μs and the vapor bubble completely covers the 
surface of the resistor within this time. The distance that heat 
travels in a substance can be approximated by equation (1), where 
l is the distance that heat travels in time t and α is the thermal 
diffusivity of the substance (DMSO). Heat travels on the order of 
50 nm into the fluid by the time the vapor bubble has initiated. The 
column of fluid between the resistor and the nozzle is 
approximately 30,000 nm tall, which means that only a very small 
fraction of the fluid in the chamber (~0.2%) directly sees the high-
temperature event. 

 

tl α≈  (1) 

 
By comparison, the traditional serial-dilution titration process 

exposes compound to multiple plastic surfaces that adsorb 
hydrophobic compounds. The amount of compound lost during 
traditional serial dilution through adsorptive contact with surfaces 
of multiple pipette tips and wells is potentially greater than that 
seen with the digital dispensing process. These losses are 
cumulative with each successive dilution, and highly diluted 
compounds (<0.1 μM) are at higher risk of meaningful depletion. 
Experiments with known compounds at several pharmaceutical 
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sites have verified that the results from the TIJ process are 
generally equivalent to those obtained by traditional serial dilution, 
as shown in Figure 6. 

 
Figure 6: Consistent response seen between HP and standard 
serial dilution across a variety of compounds and assay types. 

 
Building up doses using picoliter-scale inkjet drops provides 

advantages in the precision of dispense volumes on the picoliter, 
nanoliter, and microliter scale. Figure 7 shows the “coefficient of 
variation” (CV), a volume-normalized dispense standard deviation, 
for volumes ranging from 14 pL to 500 nL using the Digital 
Dispenser. CVs of less than 10% are generally considered to be 
good. While the Digital Dispenser achieves this level of 
performance for dispense volumes above 100 pL, analog pipetting 
typically cannot achieve this with single transfers until dispensing 
volumes are above 1 μL. 

 
Figure 7: Coefficient of variation with Digital Dispenser using 24 
dispenseheads per volume with 10 replicates per dispensehead 

 
TIJ enjoys several advantages relative to PIJ in this 

application. First, the small firing chamber of TIJ relative to PIJ 
enables a gradual decrease in the capillary length scale as the fluid 
moves from the reservoir to the nozzles, which enables self-
priming without spitting, wiping, or suction. No fluid is used in 
preparing the printhead for dispensing and very little dead volume 
fluid (<1 μL) is trapped in the fluidic channels and reservoir at the 
end of life. Secondly, the nozzle-packing density of TIJ enables 
more nozzles to simultaneously jet into a well, even in higher-
density (1536 well) plate formats with smaller wells. Thirdly, TIJ 
is more tolerant of very low-backpressure operation, which enables 
a simple low-dead-volume fluid reservoir path without foam or 

active backpressure. Finally, the relative complexity of PIJ 
systems makes it more challenging to make a cost-effective 
disposable printhead. 

 

The Digital Advantage 
Just as digital printing technology is transforming the 

traditional analog printing industry by giving users capability that 
was not practical with analog technologies, digital dispensing 
provides many advantages over traditional analog methods. 

Randomization in Layout 
Traditional serial dilution is an analog dispensing process that 

limits how experiments can be designed. For example, titrations 
are almost always designed to be spatially systematic and 
continuous to reduce the likelihood of manual pipetting error or 
reduce the complexity of robotic-pipetting. Because many assays 
are sensitive to edge effects in which wells near the edge of a plate 
react differently from wells near the center of the plate, the 
mapping of spatially continuous titrations onto these plates can 
lead to experimental error.  

  
Figure 8: Non Randomized Layout and data 

 
Figure 8 shows a plate layout and the accompanying 

effective-concentration data and curve fit for the typical spatially-
continuous 16-point titration located in the first two columns of the 
plate. In this assay, the edge wells (A1, A2, H1, H2) have a lower 
inhibition than they would if these same concentrations were 
located in center wells. Because of the systematic spatial pattern of 
concentrations associated with analog serial dilution, curve fitting 
to these data can lead to bias in the fit. 

  
Figure 9: Randomized Layout and data 

 
The original plate layout of Figure 8 was randomized via the 

system GUI to create the randomized plate layout shown in Figure 
9.  The effective-concentration data and curve fit for the same 16-
point titration found in Figure 8 (now randomized) are also shown 
in Figure 9. While edge wells still behave differently from center 
wells, the elimination of the systematic spatial pattern of 
concentrations results in a reduction of curve-fit bias. While the 
plate layout shown in Figure 9 would be difficult or impractical 
with analog pipette-based serial dilution, it is simple with a Digital 
Dispenser in which every well dispensed is completely 
independent of every other well. 
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Co-titration 
Co-titration experiments are those in which more than one 

compound is dispensed into each well to look for synergistic or 
antagonistic effects. Typically, these experiments are designed 
with titration replicates of one compound in one spatial direction 
(left-to-right) on the plate, with titrations replicates of a second 
compound arranged in the orthogonal direction (top-to-bottom). 

Because every well has a unique combination of the two 
compounds in question, these experiments are difficult to execute 
with a contact-dispensing analog system such as pipetting.  
However, these experiments are easy to design and execute with a 
non-contact Digital Dispenser. One dispensehead is used for each 
compound and the two dispense patterns are jetted sequentially 
and independently of one another. This technique can be used for 
more than two compounds per well. Other dispense operations, 
such as DMSO normalization can be conducted with additional 
dispenseheads. 

  

 
Figure 10: Compound co-titration experiment with two 
compounds. Compound 1 is upper left; Compound 2 is upper right; 
Combination of 1 and 2 is bottom. 

Finely-spaced doses 
With analog dispensing systems, each dilution level requires 

an additional set of dispensing processes. To increase confidence 
in data, dilution-levels are often replicated in triplicate as a way to 
average out some of the noise in the system. A typical titration 
would be an 8-point titration (8 concentrations) in triplicate, using 
a total of 24 wells. Creating a 24-point singlet titration instead of 
an 8-point triplicate requires three times as many serial-dilution 
steps and three times as much accumulative error in an analog 
system. However, on a Digital Dispenser where every well is 
independently dispensed, the time required to dispense a 24-point 
singlet titration is nearly equal to the time required to dispense an 
8-point triplicate.  

 
Figure 11: 384-point titration response curve 
 

Using finely-spaced singlets allows datapoints to be better 
distributed around the response curve. Figure 11 shows this 
concept taken to the extreme with a 384-point titration. A robotic 
pipette system requiring 30-seconds per dilution step would take 
more than three hours to do such a titration and would generate an 
enormous amount of waste and accumulative error with the sum of 
the dilution steps. By contrast, this titration requires only a few 
minutes on the Digital Dispenser and eliminates or reduces the 
waste of the intermediate dilution plates, fluids, and pipette tips. 
Digital dispensing allows researchers to obtain more data in the 
region of interest. 

Conclusion 
The HP D300 Digital Dispenser brings the advantages of a 

non-contact digital dispensing technology to the creation of dose-
response experiments. The small SPT dispensehead is the key to 
making a cost-effective disposable titration solution. Experimental 
layouts that are not practical with analog technologies, such as 
randomized doses, dose combinations, and very finely spaced 
doses are now possible and practical. 
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