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Abstract 
A newly developed ion head architecture for high resolution 

ionographic printing, with a spot size capability of ~100 µm, 

utilizes a dielectric barrier discharge (DBD) to produce an 

atmospheric pressure plasma that is the source of the charge.  The 

DBD is produced using a radio frequency (rf) voltage and 

extracted with biased electrodes having designs which focus the 

charge.  To aid in the development of the ion head and 

interpretation of experiments, a first principles program of multi-

dimensional computer modeling of the ion head devices has been 

conducted.  Results from the model will be discussed showing the 

dependence of the magnitude and shape of extracted charge from 

the ion head and current waveforms as a function of driving 

voltage and frequencies of the rf excitation, dielectric materials 

and geometry of the head.   

Introduction 
Dielectric barrier discharges (DBD’s) [1] are often used for 

non-thermal plasma sources at atmospheric pressure.  DBDs are 

typically powered with rf voltages (100s kHz to a tens MHz) and 

have large area electrodes, at least one of which is covered by a 

dielectric.  The plasma often consists of a forest of micro-filaments 

hundreds of microns in diameter.  These micro-filaments occur 

nearly randomly in space and during the rf voltage cycle.  After the 

plasma is initiated, charging of the dielectric may terminate the 

discharge by reducing the gap voltage below its self-sustaining 

value.  When the polarity of the applied voltage changes, the 

dielectric surface charges from the previous rf cycle enhance the 

gap voltage so that the electrons avalanche is more intense.  Micro-

dielectric barrier discharges (mDBDs) are a variant of DBDs 

where, through use of MEMS technologies, the random plasma 

filaments in macroscopic DBDs can be controlled in both space 

and time.  In certain applications such as micrometer surface 

treatment [2], a third electrode [3, 4] can used to extract electron 

current or excited states out of the mDBD.  As such, arrays of 

mDBDs can be used as sources of charge in ionographic printing. 

Microarrays of DBD’s excited by rf voltages at atmospheric 

pressure are being developed for use in high resolution ion print 

heads.  The mDBD’s have apertures tens of microns in diameter 

with spacing between individual mDBD plasma sources of tens to 

hundreds of microns.  Independent control of individual mDBDs 

in these arrays can be optimized for extracting precise amounts of 

charge and for isolation between discharges. 

A schematic of a typical, single ion head architecture is 

shown in Fig. 1.  An rf biased metal electrode is embedded in a 

dielectric substrate and is covered by a dielectric sheet.  A 

negatively DC biased discharge electrode sits on the top of the 

dielectric sheet and has an opening of ten’s of microns [5].  A less-

negatively-DC-biased screen electrode separated from the 

discharge electrode by another dielectric sheet acts as an anode 

switch to extract charges out of the cavity and narrow the current 

beam.  Spacing between the mDBDs ion heads are tens to 

hundreds of microns.   

In this paper we discuss results from a computational 

investigation of ion head architectures using arrays of mDBDs.  

The modeling used in this investigation, nonPDPSIM, is a first 

principles two-dimensional multi-fluid hydrodynamics simulation 

performed on an unstructured mesh [6].  nonPDPSIM solves 

Poisson’s equation for electric potential, continuity equations and 

surface charge balance equations for transport of charge and 

neutral species.  The electron energy conservation equation is 

solved for electron temperature.  Radiation transport is addressed 

by a Green’s function propagator.  A Monte Carlo simulation is 

used for tracking the ionization and excitation sources produced by 

sheath accelerated secondary electrons from surfaces.  The 

secondary electrons are produced by ion and photon impact onto 

all surfaces.  Rate and transport coefficients for bulk electrons are 

obtained from local solutions of Boltzmann’s equation for the 

electron energy distribution.   

mDBD Plasma Properties 
The fundamental properties of an individual mDBD will first 

be discussed.  The operating conditions are 1 atm of N2 with an rf 
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Figure 1.  Schematic of a typical single mDBD aperture 
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cavity, thereby terminating the electron plume.  The electron 

density is as high as 2 × 1015 cm-3 in the DBD cavity, and about 4 

× 1011 cm-3 in front of the top dielectric sheet.  These large electron 

densities are supported by electric fields that can exceed 1 MV/cm, 

as shown in Fig. 3.  These large fields result from space charge 

around the electrodes and on surfaces that shield and compress the 

applied voltage  

Small Arrays of mDBDs 
When electrons are extracted out of the mDBD cavitiy and 

deposited on the top dielectric, a negative voltage is produced on 

the dielectric.  This voltage produces electric fields that interact 

with the electron plumes.  These trends are illustrated by the 

results in Fig. 4 for an array of 3 mDBDs.  The electron density for 

the three mDBD devices is shown in the color flood and the 

electric potential is shown as contour lines.  The voltage on the 

three rf electrodes are in phase and the top dielectric has ε/ε0 = 1 (a 

low value chosen for demonstration purposes).  The electron 

plumes extracted from the ion heads are incident onto this 
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ure 2.  Electron density at different times during an rf cycle of 25 MHz

 ns_.  The densities are plotted on a 4-decade log scale from 2 x 10
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ency of 25 MHz.  The bias on the rf electrode is -2 kV DC 

 1.4 kV rf.  The potentials on the discharge and screen 

rodes are -2 kV and -1950 V, respectively.  A grounded 

rode is placed approximately 400 µm above the screen 

rode.  The grounded electrode is covered by a dielectric sheet.  

electron density during the rf cycle is shown in Fig. 2.  The 

 begins with -600 V on the rf electrode, which is its most 

tive value and positive with respect to the discharge and screen 

rodes.  This produces an electron flux towards the dielectric 

t above the rf electrode which charges the sheet negative.  As 

voltage on the rf electrode becomes more negative, the 

rons in the mDBD cavity are expelled into a plume that is 

sed by the screen electrode.  The plume is extracted across the 

ap and charges the dielectric on the ground electrode.  When 

f electrode approaches its most negative value (-3400 V at 20 

secondary electrons emitted by the lower dielectric sheet are 

nched to sustain the plasma in the mDBD cavity.  As the 

ge begins increasing electrons are pulled back into the mDBD 
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ure 3.  Electric field in the mDBD cavity and in the surrounding

lectric materials.  Electric fields in excess of 1 MV/cm are produced

ing the rf cycle for up to 10 ns.  
ctric target.  For early pulses, the potential lines are essentially 

and the electron plumes onto the dielectric are not perturbed.  

e are some concavities near the apertures which has the effect 

lightly focusing the electron plume while extracting the 

rons towards the dielectric.  As the extracted current 

tively charges the top dielectric, a negative potential is 

uced at the surface, electric potential lines are trapped inside 

dielectric target and lateral electric fields are produced.  A 

equence of these lateral electric fields is a broadening of the 

ron plumes.  This situation worsens with successive discharge 

es and occurs at a rate inversely proportional to the 

citance of the dielectric.  That is higher dielectric constant 

ts charge more slowly.  At later pulses the outside electron 

es are not only broadened in width but are also warped 

rds the less charged region.  The charging of the top dielectric 

t is sufficiently large that the extracting electric field directs 

lectrons towards the lateral region with less charging on the 
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target.  The large surface charge density significantly reduces the 

voltage across the gap.  As a result, the electron density is lower 

and eventually the electron extraction will be stopped by the 

negative potential.  

Sequences of instantaneous electron flux onto the top surface 

having ε/ε0 of 20 and 1 are shown in Fig. 5.  For ε/ε0 = 20, the 

electron flux on the first rf cycle (10 ns) has a FWHM of 140 µm.  

Due to positive ions accumulating in the gap, the extraction 

electric field is intensified and therefore the electron flux increases 

during the first few rf cycles.  At the same time, the surface 

negative charge density also increases with successive rf cycles.  

These negative charges decrease the potential across the gap and so 

decrease the extraction field.  The magnitude of the electron flux is 

reduced and the FWHM expands to 240 µm at 210 ns as lateral 

electric fields are produced by the dielectric charging.  For the 

dielectric surface having ε/ε0 =1, the charging effect starts earlier 

due to its lower capacitance and shorter charging time.  The 

electron flux peaks on the first rf cycle at 10 ns with a FWHM of 

160 µm.  The electron flux then decreases with successive rf 

pulses.  The possible increase in electron flux due to accumulation 

of positive space charge in the gap is overpowered by the charging 

of the dielectric which decreases the flux.  During formation of the 

latent image on the target, the negative surface charge directly 

above the ion head apertures accumulates to a critical value and 

repels the incoming charges so that the dot size becomes larger 

than
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ure 5.  Instantaneous electron flux on the top surface for ε/ε0 of (top)

and (bottom) 1.  For ε/ε0=20, the flux increases before it decreases due

surface charging.  For ε/ε0=1, the flux decreases starting from the first

se due to the shorter dielectric charging time. 
Figure 4.  Electron density (flood) and electric potential (contour lines) for

multiple rf excited mDBDs incident onto a target dielectric sheet.  The

plumes of the early pulses are unperturbed. The plumes of the latter

pulses are warped toward less charged region. 
 the diameter of the charge source beams.  This “blooming” 

lem can reduce the image quality.   

Frequencies  
The electron density in the plumes above the ion heads are a 

g function of rf frequency.  A probe adjacent to the target 

ctric above the center ion head, shown in Fig. 6, is used to 

itor the extracted electron density.  Three rf electrodes are 

n in-phase with frequencies from 2.5 to 25 MHz.  The 

ctric constant of the top surface is ε/ε0 = 12.5.  The maximum 

ron densities at successive pulses at different driving 

encies are shown in Fig. 6.  At higher frequencies, the 

ron density in the plume increases during the first few pulses 

to positive ions accumulating above the mDBD cavities.  

nwhile, negative surface charges collect on the dielectric target 

h reduces the voltage drop and decreases the extraction 

ric field adjacent to the dielectric.  The electron plume then 
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eventually overpowers the positive space charge accumulation 

above the ion heads.  At low frequency, the surface charging 

dominates and charge extraction typically decreases with 

successive pusles. 
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Figure 6.  Electron densities in the plume adjacent to the dielectric target 

(top) Geometry and location of probe.  (bottom) Peak electron density at 

the probe as a function of the number of rf pulses at frequency of up to 25 

MHz.  At high frequency, the electron flux is limited by the rf voltage.  At low 

frequency, the electron flux is limited by target surface charging. 
 

diminishes.  At lower frequencies, the electron density in the 

plume decreases with successive rf pulses.  The negative potential 

resulting from charging of the target overpowers the positive space 

charge accumulation above the ion heads.  The charging effect 

starts at the first rf pulse and warps the electron plumes.  The 

electron density then decreases and eventually the plume is 

extinguished.  

Concluding Remarks 
Computer modeling of mDBDs as used in ion heads has been 

used to investigate scaling laws and for design optimization.  The 

computer model accounts for the plasma-hydrodynamics of the 

mDBD cavity, the production of charged, neutral and photon 

fluxes onto surfaces, the extraction of electrons from the mDBD 

cavity and the charging of imaging surfaces.  We found that the 

mDBD devices can be optimized based on choice of rf frequency 

and dielectric constant of the charging surface, in addition to 

geometry of the mDBD cavity.  The mDBD devices can be 

independently biased to achieve precise control of these properties.  

We found that at high frequencies, the electron density in the 

plume first increases and then decreases with successive rf pulses.  

The negative potential resulting from charging of the target 
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