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Abstract 
 Proton exchange membrane fuel cells (PEMFC) are seen as 

potential candidates of environmentally friendly power sources for 

a wide range of fields. The durability and production cost are the 

main shortcomings limiting the large scale development and 

commercialization of this technology.  In this paper we report both 

experimental findings on PEMFC fuel cell electrodes 

manufacturing by inkjet printing as well as theoretical modeling of 

the impact of particle-laden drops and their evaporation which in 

final lead to the printed electrodes. The experiments highlight that 

deposit patterns which may be in the form of coffee rings and 

affect electrochemical performance. The form of the deposits is 

strongly influenced by four main parameters: solvent composition, 

solid content, substrate properties and temperature. A numerical 

model is developed for better understanding and predicting the 

spreading of one or more drops and the resulting coffee ring 

formation. The model is based on the lubrication approximation 

taking into account contact line motion of the drops, solvent 

evaporation, viscous and Marangoni effects which all play a 

critical role in the enhancement or limitation of coffee ring 

formation. This work may be considered as a first step to better 

control catalyst ink deposit patterns during manufacturing of fuel 

cells by fluid jetting.  

Introduction 
Proton exchange membrane fuel cells (PEMFC) offer the 

prospect of zero emission energy production for applications 

ranging from stationary power generation to automotive 

transportation. The future success and competitiveness of this 

technology are highly related to the advance on manufacturing and 

design of the Membrane-Electrodes Assembly (MEA). The 

competitiveness should be addressed by decreasing production 

costs and increasing performances and durability. A key to these 

issues is the optimization of catalyst layers which consists in 

reducing Pt loading and improving its use within the layer.  

The versatility, adaptability and reproducibility of inkjet 

printing has been extensively used in a wide range of applications 

[1] and may be considered as a promising process candidate for 

fuel cell electrodes manufacturing. This technique possess, several 

advantageous features like low ink consumption or direct writing 

of patterns. Nevertheless besides these features, the decrease of Pt 

loading requires a fine control of colloidal particle deposits 

forming the catalyst layers. Dried inkjet spots may lead to various 

and complex patterns, as the coffee ring structures, evidenced by 

Deegan et al. [2], and which have been observed in many inkjet 

applications such as organic thin-film transistors, light-emitting 

diodes or conductive deposits [1]. The deposit coffee ring results 

from the non-uniform evaporative flux, maximum at the contact 

line of the drying droplets. The particles transport is driven by the 

mutual actions of contact-line pinning and evaporation 

enhancement of solvent near the contact line. This phenomenon of 

non-uniform distribution of ink particles affects fuel cell 

performances, as we will show, and a simple model enabling to 

control that coffee stain is of great interest for optimizing the 

manufacturing of PEMFC electrodes by inkjet printing. This paper 

aims to address this issue by a relevant lubrication model account 

for contact line motion, particles content, and Marangoni effect as 

well as substrate temperature. Comparisons with experiments are 

given for a number of cases.  

Electrode Manufacturing by Fluid Jetting  

Evidence of Coffee Ring Formation 
Catalyst inks were prepared from carbon-supported catalyst 

(46% w/w platinum on Vulcan XC-72R; Tanaka) and Nafion® 

solution (DuPont DE2020, 20wt% in alcohol and water), dispersed 

in water and a suitable mixture of solvents. This mixture of 

solvents and the solid contents were adapted for the inkjet process 

and the nature of substrates. The problem of wetting due to 

hydrophobicity of the substrates was solved by adding a suitable 

surfactant. 

The formulated inks were printed with a laboratory 

piezoelectric inkjet printer developed by Siliflow ™ and composed 

of a single nozzle of 150 µm diameter. Due to its single nozzle, the 

printing time is rather long, but this equipment presents the 

benefits of being quite robust and reliable. Moreover, thanks to its 

ability to purge the ink whenever the nozzle is clogged and to 

change the ink very easily, it enables to develop catalyst inks that 

could not be used in conventional inkjet printer due to poor 

dispersion and quick sedimentation.  

Droplets were deposited on membranes (Nafion® NRE 211) 

and gas diffusion layers (GDL SGL 24BC). Different 

morphologies were examined, when varying the inks and the 

substrate temperature, with optical microscopy and scanning 

electron microscopy images. As shown in Figure 1, the addition of 

ethylene glycol to the ink leads to different patterns, which may 

hinder the formation of coffee stain even. However the coffee stain 

is present without the ethylene glycol, so that its control has to be 

evaluated relatively to the fuel cell performance.  
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Figure 1. Coffee ring formation during spreading on PEMFC GDL at different 

ethylene glycol (EG%) concentration.  

 
Coffee Ring and Single Cell Performance 
Two different inkjet printed cathodes (100µgPt/cm²): with a 

pronounced coffee ring (ratio ring/drop of 0,4) and with almost 

homogeneous spots (ratio ring/drop of 0,9) were tested. The single 

cell performances of these two inkjet printed cathodes present very 

favorable performances for these Pt loadings compared to other 

manufacturing processes. Nevertheless, the coffee ring seems to 

negatively affect the PEMFC performance as highlighted by the 

polarization curves (Figure 2) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Polarization curves under air (Cathode/Anode = Air/H2, T = 80°C, 

RH = 50% and P = 0.15MPa) comparing inkjet printed catalyst layers with 

pronounced coffee ring effect and with homogeneous printing. 

 

The obvious effect of coffee ring formation on fuel cell 

performance leads us to propose a relevant numerical modeling to 

better understand the main underlying mechanisms. This is 

detailed in the following section.  

Lubrication Approximation: Drop Evaporation 
and the Coffee Ring Modeling  

We consider a droplet of a volatile liquid on a uniformly 

heated horizontal substrate as sketched in Figure 3. The liquid 

vapor interface is given by h(r,t) with contact angle 
Eθ , the 

evaporative mass flux  through the interface is J. The drop liquid is 

assumed to be composed of a catalyst ink dissolved in a volatile 

solvent with the associated concentration equation. For simplicity, 

we have neglected gravity, which is a good approximation for 

drops smaller than the capillary length lc=(σ/(ρg))1/2.                      

                      

 
 
Figure 3. Geometry of the physical system and problem description. 

 

The model accounts for two partial differential equations solved 

simultaneously for the drop non-volatile ‘solute’ fraction c and 

droplet height h.  In fact we consider the liquid used to consist of a 

solvent phase, which evaporates, and a solute phase containing 

particles which does not. 

The dimensionless equation in cylindrical coordinates for h(r,t) of 

the problem could be rewritten in the following form [3]: 
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We adopt the following formulation for the disjoining pressure 

(n=9, m=3): 
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where
2(1 )(1 ) / *( )A n m h n mε= − − − and h*are constants 

accounting for the precursor film, ε=h0/r0. 

Note that the disjoining pressure term is zero for a fully wetting 

substrate where 0Eθ = . 

                                                                                                                                       

The dimensionless number,                                     which 

represents the ratio of the viscous time scale to the evaporative 

time scale, enables to impose the temperature variation of the 

substrate. 
sub satT T T∆ = −  is the temperature increase of the 

substrate with respect to the saturation temperature (    ). The 

liquid is of density ρ , kinematic viscosity ν , thermal 

conductivity,    and latent heat of vaporization satL .Π  

corresponds to the dimensionless disjoining pressure modeling the 

wettability. Since we assume a linear variation in the surface 

tension due to temperature T, we have  
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the substrate and liquid thermal conductivities, the substrate 

thickness and droplet height, respectively. 

For simplicity purpose, we use the assumption that the 

concentration of the solute depends only on the radial position 

c(r,t). The solute conservation leads to satisfy the following 

equation:  
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We take into account the variation of the viscosity of the fluid due 

to the evaporation of the solvent. The effect of evaporation could 

be expressed using [4] as follows: 

                                                                                                                                    

[ ]0
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µ
µ
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where c0 is the initial solute fraction and  av a constant. 

To account for the presence of particles, we make use of the 

Krieger-Dougherty equation: 

                                                                                                                                    

0 (1 / ) B

s mµ µ ϕϕ ϕ −= −                     (5) 

µs  is the liquid viscosity without particles, φm  the maximum 

packing fraction, B a constant close to 2.5. 

                                                                                                                                                    

We use the following expression for the evaporative flux mainly 

due to the temperature increase imposed by the substrate [5]:  

(1 )c
J

h W K

−
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                          (6) 

 

with 

  

                                                                   which is linked to 

the liquid volatility. 

 

Single Drop Spreading and Evaporation 

For validation purpose of the lubrication model, we consider the 

drop evaporation and spreading on a horizontal wetted substrate.  

In the spreading case, we carry out the modeling of a water drop 

spreading from an intial contact angle of 50° to an equilibrium 

contact angle of 5° for 50µl drop. Figure 3(a) shows the center 

height evolution during the spreading, which verifies the well-

known power law behavior referred to as Tanner’s law h at
β= . 

We observe very good agreement between our numerical results 

and Tanner’s law. Moreover, the coefficients, β=0.202~1/5, are 

very close to those reported elsewhere for water droplets. 

In the evaporation case, we perform both an experimental and 

numerical modeling of the evaporation of a drop of water of 15nl 

on a glass substrate of contact angle 30°. We obtain through our 

model a quite good prediction of the drop volume evolution. The 

experimental limitations prevent to measure the volume evolution 

up to complete disappearance of the drop which fortunately can be 

followed through numerical simulation. It is unlikely that the 

physics of drop evaporation change too much when the drop 

becomes smaller and smaller and moreover, at least from an 

applied point of view, this has not profound consequences on the 

final results.  The numerical model predicts an evaporation 
time of almost 2.2s which compares quite well with the 
characteristic evaporative time as shown in Figure 3(b). 

 
 

 
Figure 3. (a) Simulated drop spreading (b) Experimental and numerical 
prediction of drop during evaporation on a glass substrate at 60°C. 

 

Coffee ring Modeling 
Single Drop 

The model which has been established allows modeling the 

evaporation of a binary component containing particles. The 

evaporation of such a mixture leads to the formation of the coffee 

ring. The model is used here for controlling the coffee ring 

phenomenon involved in applications such as fuel cell 

manufacturing (Figure 4). 

The evaporation of a drop of 170µm of diameter 
containing 3% of solid particle on the PEMFC fuel cell 
GDL (gas diffusion layer) is performed at 20°C and 60°C. 

 
Figure 4: Temperature effect on the coffee ring formation at (a) 20°C and (b) 
60°C.The insert represent experimental results of coffee ring formation on 
PEMFC fuel cell GDL (Gas diffusion layer) at the prescribed temperature. 
 

For this modeling, since the ink on the GDL substrate has a 

contact angle of around 100°, we use as an initial profile a 

spherical cap deposited drop [5] which evaporates when spreading 

from 90° on the heated substrate. Due the presence of particles and 

the binary-mixture nature of the fluid the coffee ring formation 

( )1/2
3/2 2

02 /g th sat v atK R k T h Lπ α ρ=
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(a) 

(b) 
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occurs at a rate which is controlled by the temperature and the 

particle concentration. 

We numerically retrieve the fact that a heated substrate leads 

to greater evaporation which in turn yields an enhanced coffee ring 

deposit (Figure 4). We also obtain that the final contact diameter is 

0.5r0 which is comparable with the experimental result.  

Conversely, a cooled substrate diminishes largely the edge 

evaporation from the drop and one may hinder or even prevent 

coffee ring formation through this mechanism. An evident 

drawback in this case is the rate of evaporation which may be too 

long for practical purposes. 

To test the prediction capability of the model, a sensitivity 

study is performed with the Marangoni effect and the ink volatility, 

i.e, the resistance to phase change from liquid to vapor, accounted 

for by the parameter K. We obtain that the higher the Marangoni 

number, the less is the coffee ring formation, as observed in [6]. 

Also, the larger is K the lesser the volatility of the liquid. Thus for 

large value of K or low volatility liquid, the model indicates the 

possibility to limit the coffee ring formation, as shown below in 

Figure 6. This is in full agreement with the experimental 

observation of Figure 1.  

 
Figure 6. Sensitivity to the (a) Marangoni and (b) ink volatility.  

 

Coalescing drops 
By extending the previous equations in 2D [5], we carry out the 

coffee ring formation with a coalescing drop as shown in Figure 5. 

 
 

 
Figure 5. Simulated coalescing drops and evaporation at (a) initial, (b) final 
height contour plots and (c) the free surface profile.  

The simulation shows that even though the coffee ring may be 

observed its intensity seems to be limited by the coalescence 

configuration. This may be due to the distance for the particles 

transport inside the merging drops. Also the merging of drops may  

hinder or even inhibit coffee ring formation. This has to be 

checked by appropriate experiments. This is the first time, to the 

best of our knowledge, that the formation of such patterns is 

studied numerically through drop coalescence and evaporation. 

This numerical study paves the way for better understanding and 

controlling the coffee ring formation which may impact on fuel 

cell performance as demonstrated in Figure 2.  

Conclusion          
 In this paper, the effect of coffee ring formation on the 

PEMFC fuel cell performance is demonstrated.  The importance of 

the operating conditions and ink properties on coffee ring 

formation has been highlighted as well. For a better understanding 

of the phenomenon, a lubrication model is proposed accounting for 

most of the relevant physics involved in  single and multiple drops 

dynamics. The main results for spreading and evaporation have 

been validated through judicious experiments. The model, as it 

stands, is able to predict coffee ring both in case of a single and 

two coalescing drops. It may of course be extended to multiple 

drops. 
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