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Abstract 
 We have invented a new sensor adjacent methodology for 

high spatial resolution and high voltage measurement apparatus 

with which we are able to accomplish arbitrary voltage 

measurement without causing any unexpected arcing. We have 

introduced two new techniques, i.e. 1) continuously providing a 

voltage feedback to the sensor to make sure that it nullifies electric 

field between sensor and surface under test through the course of 

sensor approaching to the surface under test, 2) adjusting AC bias 

voltage to control the motion of cantilever to be constant although 

the sensor is far apart from the surface under test. We were able to 

successfully let the sensor approach a 500 V of surface under test 

without causing any arcing with keeping both DC and AC 

feedback system for the distance from 1,000 µm to 5 µm through 

adjusting AC bias voltage to the sensor from 200 Vp-p to 12 Vp-p.  

Introduction 
 The latent image of electrophotography system is highly 

susceptible to any contact with a sensor.  We have introduced a 

high voltage with high spatial resolution measurement system 

without letting a sensor contact an organic photoreceptor [1].  

We have already reported that we developed a high voltage 

measurement system which enables to measure up to +/-1 kV with 

a spatial resolution of 10 µm [2].  However, in our prior art, we 

could only accomplish a measurement of arbitrary voltage if we 

had a known voltage reference close to the sensor.  An issue for 

this measurement apparatus is how we can conduct unknown 

voltage measurement with high spatial resolution.  We need both 

DC and AC feedback voltage to the sensor for not only nullifying 

the electric field between the sensor and the surface under test but 

also keeping the motion of the cantilever vibration to be constant 

regardless the sensor is placed either far away or close to the 

surface under test.  We realized that we would have to incorporate 

a new sensor adjacent methodology to solve aforementioned issue.    

In our prior art, firstly we set the sensor at the distance of 5 

µm from a surface under test of which surface voltage was zero.  

Secondly we applied AC resonant frequency voltage to the 

cantilever with fixed amplitude then slowly increased the DC 

voltage on the surface under test while applying DC feedback 

voltage to the sensor, which was proportionally increased in 

accordance with the voltage change on the surface under test.  If 

we were able to let the cantilever vibrate with its resonant 

frequency, we were able to obtain the information of DC voltage 

on the surface then we were able to feedback DC voltage which is 

almost the same voltage as the voltage on the surface to the sensor.  

The issue is how we can obtain adequate resonance for the 

cantilever although the sensor is located anywhere within 1,000 

µm from a surface under test.  What we are reporting here is that 

we have invented a new sensor adjacent methodology for high 

spatial resolution and high voltage measurement. 

Basic Principle of Electrostatic Force 
Microscope 

A sensor is set on a cantilever of which motion is detected 

with an optical system as shown in Fig. 1.  The sensor is set close 

to a surface under test.  We apply both DC bias voltage (VDC) and 

AC bias voltage (VAC) to the sensor and cantilever. Whenever any 

voltage appears on the surface under test, we should be able to 

expect either attractive or repulsive electrostatic force induced on 

the sensor.  The electrostatic force can be detected through 

measuring bending amount of the cantilever with an optical 

leverage method.  If VAC is sinusoidal (sin ωωωωt), an electrostatic 

force induced on the sensor consists of two different forces, 

namely Fω  and F2ω where Fω has the same frequency component 

as the applied AC bias voltage, whereas F2ω has twice higher 

frequency component as the applied AC bias voltage. Appling a 

parallel plane model on the apparatus, those two forces can be 

explained with the following equations [3].  
 

 

 

Figure 1. The schematic diagram of the electrostatic force microscope. 
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If the configuration of the parallel plane model is as shown in Fig. 

2, we can measure Fω with applying a known, preset VDC to the 

sensor so that we can simply calculate the voltage on surface under 

test (ρd0/ε) with aforementioned equation (1).  

 

 

Figure 2. Schematic diagram of the parallel plane model [3]. 

 

New Sensor Adjacent Methodology with 
Electric Field Nullification 
 A sample of a surface voltage distribution measurement of a 

comb-shape electrode is shown in Fig. 3 [2].  A bias voltage of 700 

V was applied to the center electrode.  The other electrodes were 

connected to the ground.  700 V could be measured without any 

arcing although the sensor was set very close to the surface under 

test [2].  If the signal obtained (Vω) was zero, the potential 

difference between sensor and surface under test should have been 

zero.  However, we were not able to practically obtain the signal to 

be zero due to the noise component of the measurement system.  

What we had to do is to identify an absolute zero voltage.  In order 

to seek out the absolutely zero voltage, we applied a few volts of 

offset shown as VDC+ and VDC- in Fig. 4.  From the measurement of 

Vω and positive and negative voltage offset, we were able to find 

the point of Vω = 0.  

 

 

Figure 3. An example of measured surface voltage of comb-shape electrodes 

biased with 700 V [2]. 

 

 

 

Figure 4. The relationship between Vω and VDC+, VDC- for the null-method [2]. 

 

 We could measure high voltage up to +/-1 kV on the comb-

shaped electrodes without any arcing through utilizing this 

measurement method with a sensor located at a distance D = 5 µm 

from surface under test as reported formerly [2].  However, we 

realized that if the sensor was located far away from a surface 

under test, we were not able to obtain adequate vibration of the 

cantilever since the sensor was too far apart from the surface under 

test.  Therefore, we found that the said method did not work 

properly if sensor was located far away.  We are reporting here a 

new voltage measurement method through introducing a concept 

of voltage detecting sensitivity (G) in conjunction with a 

dependency on distance D between the sensor and the surface 

under test.  We have acknowledged that the minimum detecting 

sensitivity (Gmin) is required to obtain strong AC feedback signal 

to guarantee adequate and accurate measurement.  The minimum 

detecting sensitivity Gmin is attainable by increasing AC bias 

voltage VAC.  Consequently this method works well though the 

sensor is located far away from surface under test. 

Results and Discussions 

1)  Detecting Sensitivity 
We typically deal with distance D at 5 µm and we are able to 

enjoy sufficient signal to noise ratio (S/N Ratio) for the system. If 

we let the distance D set far away from surface under test, the said 

S/N Ratio decreases accordingly.  If we let the sensor get closer to 

the voltage of unknown, we have to understand the detecting 

sensitivity G at each distance D.  We define the detecting 

sensitivity G with the following equation, 

 

 
 

 

 
where VDC is the DC bias voltage applied to the sensor and 
Vω(VDC) is the signal obtained with applying VDC.  Under the 

typical measurement condition (D = 5 µm), G is in the range of 

2x10-4 to 4x10-4, which depends on the characteristics of each 

cantilever and sensor, which had under the conditions of G = 

2.3x10-4 at D = 5 µm prior to plotting the data. 

)3(
)()(
…

−

−
=

−+

−+

DCDC

DCDC

VV

VVVV
G ωω

-100
0

100
200
300
400
500
600
700
800

0 1000 2000 3000 4000
position [µm]

V
m

 [
V

]

GND GND700 V

Position [µm]

S
u

rf
ac

e 
v

o
lt

ag
e 

[V
]

VAC sin ωt

ε0

Charge

density

ρ

d

Dielectric film

ε d0

VDC
D

Surface under test

Sensor

NIP 27 and Digital Fabrication 2011     Technical Program and Proceedings 565



 

 

2)    Dependency of Detecting Sensitivity on   
Distance 
The dependency of G on D while D changes from 1 to 30 µm 

was plotted and shown in Fig. 5.  This dependency was measured 

under the condition VAC = 12 Vp-p over a flat copper plate as the 

surface under test.  We found that the relationship between G and 

D is exponential and it is likely ideal relation.  Therefore, we 

acknowledged that using this relationship is very useful for us to 

calculate appropriate DC bias voltage VDC to the sensor when the 

sensor is located at the distance D.  Prior to this measurement we 

obtained G = 2.3x10-4 at D = 5 µm.  When distance D is at 30 µm, 

we confirmed that the G was approximately 1x10-4.  We also tested 

other sensor which may have higher sensitivity than the other 

sensor, we could also confirm that G was approximately 1x10-4 at 

distance D = 70 µm.  Whenever G is greater than 1x10-4, we are 

able to calculate appropriate Vω = 0 wherever the sensor is located.  

3)  Method to Increase Detecting Sensitivity 
The issue that we have to solve is to design a high spatial 

resolution and high voltage measurement apparatus without having 

any arcing between sensor and surface under test although the 

voltage appeared on the surface under test is unknown.  We have 

been discussing the detecting sensitivity G here in this report.  

However, the detecting sensitivity G is extremely small if the 

distance D is very far, i.e. the distance D = 1,000 µm.  

For the sake of increasing G if the D is extremely far away 

from the conventional usage such as D = 1,000 µm, we increased 

the amplitude of AC bias voltage VAC to the sensor.  We obtained 

Gmin of 1x10-4 with applying VAC = 200 Vp-p at the distance D = 

1,000 µm.  The data dispersion of this measurement with a 500 V 

of surface under test out of 50 times of the same measurement was 

less than 0.2 %. 

4)  A New Method for Sensor to Approach Surface 
under Test 
We are discussing a new method for letting a sensor approach 

to an object with voltage unknown through introducing a new 

methodology, i.e. introducing a detecting sensitivity G as well as 

applying higher AC bias voltage VAC to the sensor.   

 We modified the system software to let the apparatus adapt 

the new methodology.  The details of the software modifications 

are as follows.  The block diagram of this software is shown in Fig. 

6.  

 

1) Start the system without the feedback mode (Feedback off). 

2) Set sensor at approximately 1,000 µm above the surface under     

test.  VAC is set to be 12 Vp-p. 

3) Measure detecting sensitivity G. 

4) Judging the following steps based on the figure of G. 

4-1) If the G is smaller than Gmin, increase VAC. Go to 3). 

4-2) If the G is between Gmin and Gmax, turn DC voltage feedback 

on  and keeps the DC feedback on and let the sensor get close 

to the surface under test, and go to 3). (Where Gmax is the 

value obtained at D = 5 µm.) 

4-3) If the G is close to Gmax, go to 5). 

5) Judging the following steps based on the figure of VAC. 

5-1) If VAC is smaller than 12 Vp-p, go to 3). 

5-2) If VAC is 12 Vp-p, start a normal measurement operation. 

 

Through this method, we can use the figure of G to define the most 

appropriate distance D.  

 

 

Figure 5. The dependence of the detecting sensitivity G on the distance D 

between the sensor and the surface under test. 

 

 

Figure 6. Block diagram of a new method for the sensor to approach the 

surface under test. 
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Conclusion 
 We proposed a new sensor adjacent methodology to high 

spatial resolution and high voltage measurement apparatus to 

measure specimen of unknown voltages on the surface without 

causing any arcing. Applying appropriate DC bias voltage as well 

as AC bias voltage to the sensor is critical to accomplish this 

objective.  
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