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Abstract 
Hole transport mechanism of the HP-Indigo organic 

photoconductor (OPC), is measured using the time-of-flight (TOF) 

technique. Transport is analyzed and found to be Gaussian 

throughout the whole temperature range, indicating the absence of 

deep traps in this material. Hole mobilities and diffusion 

coefficients are obtained as separate parameters for the various 

external fields and temperatures measured, and functional 

dependencies on these parameters are determined. Diffusion 

coefficients are found to grow with the electric field at much 

greater rates than mobilities, so that Einstein relation is violated. 

A relation between diffusivity and mobility is proposed for this 

MDP which displays dispersive Gaussian transport. The transient 

photocurrents are calculated by a one-dimensional Brownian 

motion model with reflecting and absorbing boundaries which fit 

the experimental results.  

The dependencies of mobilities and diffusion coefficients on 

temperature and electric field are further used to numerically 

calculate xerographic discharge curves (V-light decay) which 

show good fitting to those measured on HP-Indigo’s machines. 

This work can be further extended to several directions in order to 

describe processes affecting printing. Examples are: lateral 

conductivity, dot gain (2D), dark decay, and residual effects (V-

light degradation) which can be studied by simulating cyclic 

repeating process of charging and discharging the OPC. 

Introduction  
Organic semiconductors are a topic of intensive research due 

to their application in various electronic devices. In 

electrophotography the rate of charging and discharging of an 

organic photoconductor (OPC) influences directly the minimal 

printing time required and effects seen upon printing [1]. 

Quantifying charge carrier transport is important in order to 

determine machine performance and print quality. Therefore, 

detailed investigation of the microscopic parameters that influence 

charge carrier motion as well as the development of techniques that 

permit its determination are of great importance. The most 

common experimental technique used to measure charge transport 

in OPCs is Time of Flight (TOF) [2]. The OPC is placed between 

two blocking electrodes and is initially charged so a capacitor is 

formed with an applied uniform electric field. A short 

monochromatic pulse of light is flashed upon the sample through 

one electrode which is semi-transparent. The induced photons 

create electron-hole pairs in the OPC which are swiftly pulled apart 

by the external field. Holes travel along the bulk of the sample 

over a distance of several micrometers until they discharge the exit 

electrode. Their transport through the OPC produces a 

displacement current which can be measured in an external 

electrical circuit. By the signal shape and magnitude we can 

determine hole transport parameters and study transport 

mechanism [3]. A TOF experiment is similar to the imaging step of 

the xerographic process, except that in the former the number of 

charge carriers is much smaller than the charge on the electrodes 

so that they scarcely perturb the external field [4]. 

Ideally (as in crystalline semiconductors [2]), a well-defined 

sheet of charges moves at a constant velocity across the sample 

thus creating a plateau in the current. The current falls off to 0 at 

the transit time tτ,, when the charge carriers arrive at the exit 

electrode. In an actual experiment, however, due to the system’s 

finite temperature, diffusion is superimposed upon the drift. The 

charge packet progressively spreads out about its mean position 

during motion, and due to this normal or Gaussian diffusion, the 

transient current I(t) shows a rounded fall-off near tτ. For many 

amorphous organic and inorganic semiconductors a quite different 

behavior is observed [5] as the current decreases continuously up 

to very long times. In a double logarithmic plot two slopes are 

observed demarcated at an effective transit time. Such a current 

implies that drifting carriers slow down continuously and the 

spread of their arrival times is much greater than expected from 

conventional diffusion theory, i.e. diffusion is anomalous or 

dispersive. 

HP-Indigo’s OPC consists of two-layers: a thin Charge 

Generating Layer (CGL) of organic pigment combined with a 

thicker charge transport layer (CTL) which has good ability for 

hole transfer. The CTL is fabricated from a molecularly doped 

polymer (MDP); a solid solution of Charge Transferring Molecules 

(CTM) of hydrazone based organic molecules dispersed in an inert 

polymeric binder of polycarbonate. Absorbed laser light creates 

electron-hole pairs in the CGL. Holes generated close to the CTL 

boundary initiate transport process by an electron transfer from a 

neutral molecule in the CTL to a photoexcited hole in the CGL and 

this is followed by a field-driven chain of electron transfer events 

from neutral molecules to their radical cation derivatives, i.e. 

conduction occurs by a hopping mechanism. Charge transport in 

MDPs has been the subject of numerous investigations [1-4]. The 

mobility depends on the electric field, temperature, dopant 

concentration and the dopant molecule. In many MDPs dispersive 

transport is not correct and in some there is a transition between 

the two behaviors by changing the temperature [8]. Many models 

have been developed to describe the charge carrier transport 

mechanism including the Poole-Frenkel (PF) model, Polaronic 

models, Gaussian Disorder Model (GDM) and the correlated 

Gaussian disorder model [1-4]. However, the dependence of 

transport on external parameters is not fully understandable in 

terms of any available model. 

In this paper we report a study of hole transport in HP-

Indigo’s OPC by the TOF experiment. We show by the method of 
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analysis proposed by [6] that the transient is non-dispersive and 

extract mobilities and diffusion coefficients. The functional 

dependencies of these parameters on temperature and electric field 

are studied and hole transport mechanism is proposed. The TOF 

signal is retrieved from the transport data both analytically and 

numerically. The transport parameters are further used to simulate 

the xerographic process (V-light decay). These results can be 

extended to obtain other processes occurring during printing such 

as residual effects upon subsequent charging and discharging of 

the OPC. Also 2D effects such as dot-gain can be simulated once 

transport parameters are known. 

Experimental  
A sample configuration of the OPC is shown in Figure 1. A 

thick layer (~70µm) of Mylar serves as a substrate and a film of an 

Al electrode (~0.5µm) is deposited on the Mylar. The CGL 

(~0.5µm) and CTL (L~18µm) are spread coated on the Al 

electrode. The doping concentration of the CTMs in the CTL is 

30% by weight. A top conductive and semi transparent gold 

electrode (~0.1µm) is spattered on the CTL, and finally silver paint 

is padded for electrical conduction. The sample is connected to a 

resistor and is used as a capacitor in an RC circuit. The product 

RC~3µsec is much smaller than the transit time tτ which is in the 

order of 1msec.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 TOF Experimental set-up including the OPC configuration 

High voltages of 300-1000V charge the sample, with electric 

fields of E~1.5·105–5·105V/cm. After charging, a diode laser pulse 

with wavelength of 650nm (passes through the transparent CTL 

and) photogenerates holes in the highly absorbing CGL. The 

penetration depth in the CGL is very small compared with the CTL 

thickness so we assume that a quasi 2D charge packet is formed. 

Electrons go immediately to the Al electrode while holes drift 

through the CTL to the gold electrode. For light modulation, a high 

frequency Agilent signal generator is used with pulse duration of 

0.5-5µsec, much shorter than the transit time of ~1msec. The 

incident laser power is adjusted to ~7mW so that maximum charge 

generation is less than 0.03CV in order to prevent space charge 

effects. The applied pulse signal and experiment photocurrents are 

monitored by Tektronix e-scope, the latter by showing a voltage 

drop at a resistor in parallel with the oscilloscope. Measurements 

are done at temperatures of T=12.50C-660C, close to those in the 

printing machine. Higher temperatures are voided in order not to 

reach the glass transition temperature of the CTL. Photocurrents 

are reproducible among different samples.  

Results and Discussion 
Typical TOF smoothed transients on bilinear axis are shown 

in Figure 2 (main part). The results seen are for 300C data however 

at all temperatures transients show similar features and in what 

follows the same analysis is done and will be reported for all 

temperatures measured. The general features of a Gaussian TOF 

transient are seen; an initial spike, followed by a plateau region 

(though sometimes there is a small increase or decrease in the 

signal) after which appears a long decaying tail i.e. the transit time 

is clearly discernible. 

 
Figure 2 Typical smoothed TOF currents at 30

0
C and numerical fitting of 

a 17.2µµµµm sample measured at electric fields ranging from 1.74·10
5
V/cm 

to 5.81·10
5
V/cm. Inset: Fitting the normalized currents derivatives to the 

Inverse Gaussian formula of Eq. (4) as a first passage waiting time 

distribution from which mobilities and diffusion coefficients are 

extracted. 

In most previous studies, transit times were measured from 

the intersection of the tangents prior to and after the sharp pulse 

signal decrease [4]. Mobilities thus derived represent those of the 

first carriers reaching the electrode and not of the mean carrier 

arriving. In order to find a measure for the average carrier 

mobility, the signal is analyzed by a method [6] which also allows 

finding the diffusion coefficient. We fit the signal to a function 

describing the current which would flow if the sample were semi-

infinite I0(t) multiplied by a reduction factor that accounts for 

arrival of carriers at the collecting electrode, i.e.  
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where the factor in brackets is the proportion of charge 

carriers still contributing to the current such that pt(t) is the first 

passage time distribution, i.e. the probability that a carrier will 

arrive at the electrode between times t-t+dt. In most cases I0(t) 

decreases initially as a result of trapping or relaxation in a density-

of-states (DOS) energy distribution, though it can also rise in some 

cases because of delayed generation effects (as seen in some of our 

data). Thus, trial functions for I0(t) are chosen to allow for both 

dispersive and non-dispersive transport [5]

 10)( )1( ≤≤⋅= −− ααtAtI o  (2)

 The parameter A provides an overall scale for the signal and is 

a function of laser-pulse intensity, charge generation efficiency and 

electrical circuit parameters.  α is the dispersion parameter which 
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is less than 1 for dispersive transport, close to 1 for a non-

dispersive signal, but can also exceed 1 (for delayed generation). 

All transients are analyzed as follows: The signal is fit for 

short times (right after the very short initial spike) to the form of 

Eq. (2) and parameters A and α are extracted. Then, the entire 

transient is divided by I0(t) so that arrival time distribution is found 

by using the derivative form of Eq. (1)  
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Fitting to a power-law form of Eq. (2) gives values of α close 

to 1 as is also expected by observation of the current signals. This 

implies the applicability of the Gaussian model. However, the 

strongest evidence for its correctness is obtained by fitting the first 

passage time distributions (inset of Figure 2) to the function 
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which is the inverse Gaussian distribution, i.e. the first passage 

waiting time if carrier positions are Gaussian, ),(~)( DttvNtx [7]. 

Mobilities Analysis 
The hole mobility µ is related to the average velocity by 

[2] VLvEv ⋅==µ
.  

Typical to MDPs the mobility shows a 

Poole-Frenkel (PF) behavior (see Figure 3 where lnµ is linear with 

E1/2), with field and temperature dependence that can be described 

by [8] 
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where µ0(T) is the zero field mobility, β(Τ) is the PF factor. 

The right hand side of Eq. (6) is a result of the Gaussian Disorder 

Model (GDM) [8]. In the GDM charge carriers are viewed as 

hopping in a Gaussian distribution of localized states whose widths 

are determined by the disorder. There are two types of disorder: 

energetic (diagonal) with standard deviation σ that reflects the 

width of the DOS and positional (off-diagonal) with standard 

deviation Σ. Imposing an external field tilts the DOS and thus 

lowers the activation energy and increases hole mobility as in Eq. 

(5). µ0 is the high temperature limit of the zero field mobility and 

C is an empirical constant. From fitting β(Τ) and µ0(T) (inset of 

Figure 3) we calculate the GDM parameters σ=0.107eV,   

Σ=2.584, C=1.7·10-4(cm/V)1/2 and µ0=4.36·10-4(cm2/V·sec) which 

are similar to published results [3,4]. 

 
Figure 3 lnµµµµ vs. E  for various temperatures and fitting to the PF 

formula. Insets: Plot of the slopes (ββββ) and intercepts (lnµµµµ0000) ) ) )  of the main 

part of the figure as functions of T
-2

 to obtain the GDM parameters. 

Diffusion Coefficients Analysis 
The proposed signal analysis allows us to extract the diffusion 

coefficients separately. Similar to mobilities the logarithms of the 

diffusion coefficients increase with the electric field at a rate 

proportional to E  and with a slope decreasing with temperature 

(Figure 4) [3]. Therefore, the following formula was proposed [9]:  
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where D0 is the zero-field high temperature mobility and T1, 

Cd and ∆ are parameters. Fitting gives D0=3.192·10-3cm2/sec, 

T1=846.2K, Cd=6.90·10-4(cm/V)1/2 and ∆=0.14.  

According to Einstein’s relation D=µkT/eE, however, as seen 

in the inset of Figure 4, this is not the case and diffusion 

coefficients grow at much greater rates than mobilities. Thus 

although TOF currents display Gaussian statistics, they vary from 

conventional normal transport, because the spread of velocities is 

anomalously large. This was previously observed for other 

amorphous OPCs [10] as anomalous broadening of the tails and 

also in MC simulations [11,12]. In deriving Einstein’s law one 

assumes the medium is isotropic and electric fields are low so that 

response is linear. Though in ordinary crystalline semiconductors 

this holds, in random amorphous systems it is not true. Random 

molecules retain their identity, interacting only weakly through 

van-der-Waals forces and transport is controlled by a distribution 

of transition rates reflecting the randomness of the medium. Under 

the action of a field, a packet of charge carriers spreads faster with 

time because carriers have more possibilities to reside in favorable 

and unfavorable sites. If the time to reach equilibrium exceeds the 

mean transit time, diffusion becomes anomalous, its signature 

being the dispersive current signal. The behavior seen here which 

stands between the two extremes is termed Dispersive Gaussian 

Transport (DGT) [11] and was also shown by simulations for finite 

energy dispersion parameters.  

 
Figure 4 Diffusion coefficients vs. E

1/2
 for different temperatures. Inset: 

ln D vs. ln µµµµ showing that diffusion increases at much greater rates than 

mobility. 

TOF and V-Light Decay Calculation 
The photocurrents transients can be calculated both 

numerically and analytically [7]. Numerically we solve the 

advection-diffusion equation (10) for carrier distribution ρ(x,t) 

with a reflecting and an absorbing boundary: 
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A reflecting boundary models the fact that holes cannot 

diffuse across the CGL and an absorbing boundary represents 

holes arrival and recombination at the counter electrode. Initial 

positions are distributed normally at around 0.5µm from x=0 to 

mimic diffusion from the CGL to the CTL and the finite 

penetration length of the laser. Inserting ),( TEv  and D(E,T) from 

Eqs. (5) and (6) to Eq. (10) and calculating the current as  
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yields a current which fits the experimental transients (Figure 2).  

Charge transport parameters are further used to study V-light 

decay, i.e. the OPC voltage decay as a function of time from the 

exposure on HP Indigo’s printing machines. Experimentally 

several electrometers are placed around an OPC drum and the 

residual voltages are measured. As mentioned, in contrast to TOF 

experiments, upon printing the voltage on the OPC is not constant. 

Advection-diffusion model is now calculated provided that the 

values of mobilities and diffusion coefficients are continuously 

changing during the course of discharging the OPC as the electric 

field changes. The simulation shows very good prediction of V-

light decay at high voltages where space charge effects can be 

neglected. However, at low voltages the simulation does not tilt to 

a constant V-light as the experimental curve, since this model does 

not take into account space charge effects that screen the electric 

field and reduce the drift current. The Poisson equation which 

models interactions between holes should be coupled to the 

advection-diffusion equation in this limit.  

 
Figure 5 A plot of the OPC voltage vs. time as measured on Indigo’s 

machines and calculating for mobilities and diffusivities which change 

with the electric field at T=30C. 

Conclusions 
In conclusion, hole transport in MDP is studied using the TOF 

technique. Transport is found to be Gaussian, although diffusion 

coefficients increase with field at much greater rates than 

mobilities. The advection-diffusion equation is further used to 

simulate V-light decay employing the relations between mobilities 

and diffusivities and the electric fields. 
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